Rota's Program on Algebraic Operators and operated Hopf algebras¹

2021.08.25, 西南大学

高兴,兰州大学

¹This is the joint work with Li Guo, Tianjie Zhang and Huhu Zhang etc.

Outline

Rota's program on algebraic operators

- Roles played by linear operators
- Rota's program on algebraic operators

2 Operated algebras

Bewriting systems and Gröbner-Shirshov bases

- Rewriting systems
- Gröbner-Shirshov bases
- Rota's programm answered by rewriting systems and GSB

Contents

Rota's program on algebraic operators

- Roles played by linear operators
- Rota's program on algebraic operators

2 Operated algebras

3 Rewriting systems and Gröbner-Shirshov bases

- Rewriting systems
- Gröbner-Shirshov bases
- Rota's programm answered by rewriting systems and GSB

Operated Hopf algebras

Linear operators

- Throughout the development of mathematics, linear operators satisfying operator identities have played a pivot role. Such operators can be defined for various algebraic structures.
- For the introduction, we will restrict ourselves to the associative context for the sake of historical perspective and simplicity.
- We list some of the operators below.
- From the study of algebra and Galois theory arose the algebra and group homomorphisms, satisfying the operator identity

$$P(xy)=P(x)P(y).$$

Examples of linear operators

 In the study of analysis, there are the differential operator (derivation), satisfying the Leibniz rule

$$d(xy) = d(x)y + xd(y)$$

- The integral operator, satisfying integration by parts formula $\int_{a}^{x} f'(t)g(t)dt = f(x)g(x) - \int_{a}^{x} f(t)g'(t)dt.$
- In his study of probability, G. Baxter [1] introduced the Rota-Baxter operator, satisfying the operator identity

$$P(x)P(y) = P(xP(y)) + P(P(x)y) + \lambda P(xy).$$

G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, *Pacific J. Math.* **10** (1960), 731-742.

 The Reynolds operator originated from fluid mechanics(流体动力 学), defined by the operator identity

R(x)R(y) = R(xR(y)) + R(R(x)y) - R(R(x)R(y)).

This operator was treated in [4] quite recently.

T. Zhang, X. Gao and L. Guo, Reynolds algebras and their free objects from bracketed words and rooted trees, *J. Pure Appl. Alg.*, **225** (2021), 106766.

• The notion of averaging operator was explicitly defined by Kampéde Fériet satisfying

$$P(x)P(y) = P(xP(y)) = P(P(x)y).$$

- It was already implicitly studied by O. Reynolds in 1895 in turbulence theory (湍流理论) under the disguise of a Reynolds operator, since an idempotent operator is a Reynolds operator if and only if it is an averaging operator.
 - J. Kampéde Fériet, L'etat actuel du probléme de la turbulaence (I and II), *La Sci. Aérienne* **3** (1934), 9-34, **4** (1935), 12-52.

Examples of linear operators

 Studies in mathematics, aerodynamics (空气动力学) and signal processing (信号处理) gave rise to the Hilbert transformation (later called modified Rota-Baxter operator) satisfying

$$P(x)P(y) = P(xP(y)) + P(P(x)y) + \lambda xy,$$

- The modified Rota-Baxter operator is related to a Rota-Baxter operator by a linear transformation.
- Let (R, P) be a Rota-Baxter algebra of weight λ . Define

$$Q := -\lambda id - 2P.$$

Then (R, Q) is a modified Rota-Baxter algebra of weight $-\lambda^2$.

 Its recent name modified Rota-Baxter operator was adapted from the modified Yang-Baxter equation in Lie algebra.

- All these operators were known to Gian-Carlo Rota, thanks to his broad interests spanning from functional analysis, probability, lattice theory, algebra and foremost combinatorics.
- Other researchers had taken operator identities with their studies of particular interests.
- Rota looked at such identities from a more transcendental perspective, probably because of his expertise as a Professor of Philosopher as well as one of Applied Mathematics at MIT.

Rota's program on algebraic operators

 Rota's program on operator identities was formulated in his 1995 survey paper:

> In a series of papers, I have tried to show that other linear operators satisfying algebraic identities may be of equal importance in studying certain algebraic phenomena, and I have posed the problem of finding all possible algebraic identities that can be satisfied by a linear operator on an algebra.

• Here algebras mean associative algebras.

G.-C. Rota, Baxter operators, an introduction, in Joseph P.S.Kung, Editor, Gian-Carlo Rota on Combinatorics, Introductory papers and commentaries, Birkhäuser, Boston, 504-512, 1995.

Rota's program on algebraic operators

- We call a linear operator algebraic if the operator satisfies an algebraic operator identity.
- Then we can call Rota's program stated above the Rota's Program on Algebraic Operators.
- All the above mentioned operators are algebraic.
- Since Rota proposed his program, further exciting applications of the linear operators that Rota noted above have been found.
- For example, Differential algebra, originated from an algebraic study of differential equation by Ritt in the 1930's, have been developed by the school of Kolchin and many others into a vast area of research with applications ranging from logic to arithmetic geometry and mechanical proof of geometric theorems.

New operators after Rota's program

- After the promotion of Rota [3], Rota-Baxter algebra experienced a remarkable renaucence this century, most notably by its applications to renormalization of quantum field theory and Stotisctic process (随机过程).
- At the same time, new linear operators have merged.
- They include differential operators with weight defined by

$$d(xy) = d(x)y + xd(y) + \lambda d(x)d(y).$$

which, as a natural generalization of the differential operator, was introduced in:

L. Guo and W. Keigher, On differential Rota-Baxter algebras, *J. Pure. Appl. Algebra* **212** (2008), 522-540.

New operators after Rota's program

• Modified differential operators of weight λ satisfy the operator identity

$$d(xy) = xd(y) + d(x)y + \lambda xy.$$

• Nijenhuis operators satisfy the operator identity

$$P(x)P(y) = P(xP(y) + P(x)y - P(xy)),$$

introduced by Carinena *et al.* to study quantum bi-Hamiltonian systems.

• TD operators characterize by the operator identity

$$P(x)P(y) = P(xP(y) + P(x)y - xP(1)y).$$

New operators after Rota's program

$$\mathfrak{H}(xy) = \mathfrak{H}(x)x\mathfrak{H}(y)x^{-1}$$
 (resp. $\mathfrak{H}(xy) = x\mathfrak{H}(y)x^{-1}\mathfrak{H}(x)$).

• A map \mathfrak{B} on a group *G* is called a Rota-Baxter operator of weight 1 (resp. -1) if

$$\mathfrak{B}(x)\mathfrak{B}(y) = \mathfrak{B}\left(x\mathfrak{B}(x)y\mathfrak{B}(x)^{-1}\right)$$

(resp.
$$\mathfrak{B}(x)\mathfrak{B}(y) = \mathfrak{B}\left(\mathfrak{B}(x)y\mathfrak{B}(x)^{-1}x\right)$$
).

L. Guo, H. Lang and Y. Sheng, Integration and geometrization of Rota-Baxter Lie algebras, arXiv:2009.03492.

Rota's program on algebraic operators

 Such developments further shows that operator identities are ubiquitous (普遍存在的) in mathematics and motivated us to revisit Rota's Program on Algebraic Operators:

finding all possible algebraic identities that can be satisfied by a linear operator on an algebra.

- In this process, we found that the understanding of Rota's Program on Algebraic Operators depends on two key points.
- First, we need a suitable framework to formulate precisely what is an "operator identity" (or "algebraic identity").
- Second, we need to determine key properties that characterize the classes of operator identities that are of interest to other areas of mathematics, such as those listed above.

The first key point: what is an "operator identity"

- For the first point, we note that a simplified but analogous framework has already been formulated in the 1960s and subsequently explored with great success.
- This is the study of PI-rings and PI-algebras, whose elements satisfy a set of polynomial identities.
 - V. Drersky and E. Fromanek, Polynomial Identity Rings, *Birkhäuser*, 2004.
 - C. Procesi, Rings with Polynomial Identities, *Pure Appl. Math.*, vol. 17, Marcel Dekker, Inc., New York, 1973.

The first key point: what is an "operator identity"

- With the extra action of linear operators, the suitable structure is the operated algebras.
- Namely, an operated algebra is an (associative) algebra equipped with a linear operator.
- Then the free object can be realized as the operated polynomial algebras, consisting of operated polynomials.
- Thus operator identities should be taken to be operated polynomial identities (OPIs) in the operated polynomial algebra.

• Then the second key point may be interpreted as follows:

among all OPIs, which ones are particularly consistent with the associative algebra structure (i.e. associativity) so that they are singled out for study?

• We realize this idea by making use of two related theories: rewriting systems and Gröbner-Shirshov bases.

Contents

Rota's program on algebraic operators

- Roles played by linear operators
- Rota's program on algebraic operators

Operated algebras

Rewriting systems and Gröbner-Shirshov bases

- Rewriting systems
- Gröbner-Shirshov bases
- Rota's programm answered by rewriting systems and GSB

Operated Hopf algebras

Operated algebras

- The concept of operated algebras originated from the work of Higgins on multi-operator group in 1956.
- Soon afterwards, Kurosh proposed the notation of algebras with (one or more) linear operators, which was forgotten almost 50 years until it was rediscovered by Guo [5].
- Guo called it an Ω-operated algebra and constructed the free Ω-operated algebra on a set.

Definition (Guo, 2009)

- An operated monoid (resp. operated k-algebra) is a monoid (resp. k-algebra) U together with a map (resp. k-linear map)
 P_U: U → U.
- ② A morphism from an operated monoid (resp. **k**-algebra) (U, P_U) to an operated monoid (resp. **k**-algebra) (V, P_V) is a monoid (resp. **k**-algebra) homomorphism $f : U \to V$ such that $f \circ P_U = P_V \circ f$.

- Now we review the construction of free operated algebras in terms of bracketed words.
- For examples,

$$xy$$
, $\lfloor x \rfloor$, $\lfloor x \rfloor y$, $\lfloor \lfloor x \rfloor y \rfloor$

are bracketed words.

• For any set *Y*, let *M*(*Y*) the free monoid on *X* with identity 1, and let

$$[Y] := \{ \lfloor y \rfloor \mid y \in Y \}$$

 The free operated monoid over X can be naturally constructed by the limit of a directed system

$$\{\iota_n:\mathfrak{M}_n\to\mathfrak{M}_{n+1}\}_{n=0}^\infty$$

of free monoids \mathfrak{M}_n , where the transition morphisms ι_n will be natural embeddings.

Let

 $\mathfrak{M}_0 = M(X)$ and $\mathfrak{M}_1 := M(X \cup \lfloor \mathfrak{M}_0 \rfloor)$.

• Let ι_0 be the natural embedding $\iota_0 : \mathfrak{M}_0 \hookrightarrow \mathfrak{M}_1$ from the inclusion $X \hookrightarrow X \cup \lfloor \mathfrak{M} \rfloor$.

Free operated algebras

 Assuming by induction we have defined the free monoids 𝔐_i and natural embeddings ι_i : 𝔐_i → 𝔐_{i+1} for 0 ≤ i ≤ n + 1.

Then let

 $\mathfrak{M}_{n+2} := M(X \cup \lfloor \mathfrak{M}_{n+1} \rfloor).$

The injection

$$\iota_{n+1}: X \cup \lfloor \mathfrak{M}_n \rfloor \hookrightarrow X \cup \lfloor \mathfrak{M}_{n+1} \rfloor,$$

extends to an embedding of free monoids

$$\iota_{n+1}:\mathfrak{M}_{n+1}=M(X\cup\lfloor\mathfrak{M}_n\rfloor)\hookrightarrow M(X\cup\lfloor\mathfrak{M}_{n+1}\rfloor)=\mathfrak{M}_{n+2}.$$

Finally we define the monoid

$$\mathfrak{M}(X) := \lim_{n \to \infty} \mathfrak{M}_n = \bigcup_{n \ge 0} \mathfrak{M}_n$$

whose elements are called bracketed words or bracketed monomials on *X* on *X*.

(

Theorem (Guo, 2009)

Let $i : X \hookrightarrow \mathfrak{M}(X)$ and $j : \mathfrak{M}(X) \hookrightarrow \mathbf{k}\mathfrak{M}(X)$ be the natural embeddings. Then

• the triple $(\mathfrak{M}(X), P := \lfloor \rfloor, i)$ is the free operated monoid on X;

2 the triple $(\mathbf{k}\mathfrak{M}(X), P, j \circ i)$ is the free operated algebra on *X*, where *P* is the linear operator induced by [].

- Thanks to the above construction of free operated algebras, we now can characterize precisely what an operator identity is in Rota's Program on Algebraic Operators.
- Namely, let $\phi = \phi(x_1, \dots, x_k) \in \mathbf{k}\mathfrak{M}(X)$. We call $\phi = 0$ (or simply ϕ) an operated polynomial identity (OPI).

Contents

Rota's program on algebraic operators

- Roles played by linear operators
- Rota's program on algebraic operators

Operated algebras

Rewriting systems and Gröbner-Shirshov bases

- Rewriting systems
- Gröbner-Shirshov bases
- Rota's programm answered by rewriting systems and GSB

Operated Hopf algebras

Definition

Let V be a vector space with a linear basis W.

- A term-rewriting system Π on V with respect to W is a binary relation $\Pi \subseteq W \times V$.
- An element (t, v) ∈ Π is called a (term-) rewriting rule of Π, denoted by t → v.

Definition

A term-rewriting system Π on V is called

terminating if there is no infinite chain of one-step rewritings

 $f_0 \rightarrow_\Pi f_1 \rightarrow_\Pi f_2 \rightarrow_\Pi \cdots \quad .$

confluent if every fork is joinable.

Source of the second se

***-bracketed word**

We list some basic notations for Gröbner-Shirshov bases.

Definition

Let X be a set, let \star be a symbol not in X, and let $X^{\star} = X \cup \{\star\}$.

- By a *-bracketed word on X, we mean any word in M(X*) with exactly one occurrence of *. For example, x*, [*]. The set of all *-bracketed words on X is denoted by M*(X).
- Por q ∈ M^{*}(X) and u ∈ M(X), we define q|_{*→u} (or q|_u) to be the bracketed word on X obtained by replacing the symbol * in q by u. For example

$$x \star |_{y} = xy, \lfloor \star \rfloor_{x} = \lfloor x \rfloor.$$

So For $q \in \mathfrak{M}^{\star}(X)$ and $s = \sum_{i} c_{i}u_{i} \in \mathbf{k}\mathfrak{M}(X)$, where $c_{i} \in \mathbf{k}$ and $u_{i} \in \mathfrak{M}(X)$, we define $q|_{s} := \sum_{i} c_{i}q|_{u_{i}}$.

A monomial order is a well order that is compatible with all operations in the algebraic structure.

Definition

Let X be a set. A monomial order on $\mathfrak{M}(X)$ is a well order \geq on $\mathfrak{M}(X)$ such that

 $u > v \Rightarrow q|_u > q|_v$, for all $u, v \in \mathfrak{M}(X)$ and $q \in \mathfrak{M}^*(X)$.

Composition

Let \overline{f} be the leading bracketed word (monomial) of f.

Definition

Let \geq be a monomial order on $\mathfrak{M}(X)$ and $f, g \in \mathbf{k}\mathfrak{M}(X)$ be monic.

If there are $w, u, v \in \mathfrak{M}(X)$ such that $w = \overline{f}u = v\overline{g}$ with $max\{|\overline{f}|, |\overline{g}|\} < |w| < |\overline{f}| + |\overline{g}|$, we call

$$(f,g)^{u,v}_w := fu - vg$$

the intersection composition of f and g with respect to w.

② If there are $w \in \mathfrak{M}(X)$ and $q \in \mathfrak{M}^{\star}(X)$ such that $w = \overline{f} = q|_{\overline{g}}$, we call

$$(f,g)^q_w := f - q|_g$$

the including composition of f and g with respect to w.

The above *w* is called an ambiguity.

An example

Consider the Rota-Baxter equation

$$\lfloor x \rfloor \lfloor y \rfloor - \lfloor x \lfloor y \rfloor \rfloor - \lfloor \lfloor x \rfloor y \rfloor = 0.$$

Then

$$W = \lfloor X \rfloor \lfloor Y \rfloor \lfloor Z \rfloor = \overline{f} \lfloor Z \rfloor = \lfloor X \rfloor \overline{g}$$

is an ambiguity, with

$$f = \lfloor x \rfloor \lfloor y \rfloor - \lfloor x \lfloor y \rfloor \rfloor - \lfloor \lfloor x \rfloor y \rfloor, \quad g = \lfloor y \rfloor \lfloor z \rfloor - \lfloor y \lfloor z \rfloor \rfloor - \lfloor \lfloor y \rfloor z \rfloor.$$

The corresponding intersection composition is $f\lfloor z \rfloor - \lfloor x \rfloor g$. Also

$$w = \lfloor p \rfloor_{\lfloor r \rfloor \lfloor s \rfloor} \rfloor \lfloor y \rfloor = \overline{f} = q \vert_{\overline{g}}$$

is another ambiguity, with $q = \lfloor p \rfloor \lfloor y \rfloor$ and

$$f = \lfloor p |_{\lfloor r \rfloor \lfloor s \rfloor} \lfloor y \rfloor - \lfloor p |_{\lfloor r \rfloor \lfloor s \rfloor} \lfloor y \rfloor \rfloor - \lfloor \lfloor p |_{\lfloor r \rfloor \lfloor s \rfloor} \rfloor y \rfloor,$$

$$g = \lfloor r \rfloor \lfloor s \rfloor - \lfloor r \lfloor s \rfloor \rfloor - \lfloor \lfloor r \rfloor s \rfloor.$$

The corresponding including composition is $f - q|_g$.

Definition

Let *X* be a set and \geq be a monomial order on $\mathfrak{M}(X)$. Let $S \subseteq \mathbf{k}\mathfrak{M}(X)$. **1** An element $f \in \mathbf{k}\mathfrak{M}(X)$ is called trivial modulo (S, w) if

$$f = \sum_i c_i q_i |_{s_i} \, \, \textit{with} \, q_i |_{s_i} < w, \, \, \textit{where} \, c_i \in \mathbf{k}, q_i \in \mathfrak{M}^*(X), s_i \in S.$$

② We call *S* a Gröbner-Shirshov basis in k𝔐(X) with respect to ≥ if, for all pairs $f, g \in S$, every intersection composition of the form $(f, g)_w^{u,v}$ is trivial modulo (S, w), and every including composition of the form $(f, g)_w^q$ is trivial modulo (S, w).

Definition

Let \geq be a monomial order on $\mathfrak{M}(X)$ and S be a monic subset of $\mathbf{k}\mathfrak{M}(X)$. We define a rewriting system:

 $\Pi^{\mathrm{ass}}_{\boldsymbol{S}} := \{\boldsymbol{q}|_{\overline{\boldsymbol{s}}} \to \boldsymbol{q}|_{\boldsymbol{R}(\boldsymbol{s})} \,|\, \boldsymbol{q} \in \mathfrak{M}^{\star}(\boldsymbol{X}), \boldsymbol{s} = \overline{\boldsymbol{s}} - \boldsymbol{R}(\boldsymbol{s}) \in \boldsymbol{S}\} \subseteq \mathfrak{M}(\boldsymbol{X}) \times \boldsymbol{k}\mathfrak{M}(\boldsymbol{X}).$

Example

$$\begin{split} \Pi^{\mathrm{ass}}_{diff} &:= \Big\{ q|_{\lfloor uv \rfloor} \to q|_{x \lfloor y \rfloor + \lfloor x \rfloor y + \lambda \lfloor x \rfloor \lfloor y \rfloor} \mid q \in \mathfrak{M}^{\star}(X), u, v \in \mathfrak{M}(X) \Big\}, \\ \Pi^{\mathrm{ass}}_{RB} &:= \Big\{ q|_{\lfloor u \rfloor \lfloor v \rfloor} \to q|_{\lfloor u \lfloor v \rfloor + \lfloor u \rfloor v + \lambda uv \rfloor} \mid q \in \mathfrak{M}^{\star}(X), u, v \in \mathfrak{M}(X) \Big\}. \end{split}$$

The following is the relationship between a Gröbner-Shirshov basis of OPIs and a convergent rewriting system of OPIs.

Theorem (Gao-Guo, [4])

Let X be a set, and let \geq be a monomial order on $\mathfrak{M}(X)$. Let $S \subseteq \mathbf{k}\mathfrak{M}(X)$ be monic, and let Π_S^{ass} be the term-rewriting system from S. TFAE

- Π_S^{ass} is convergent.
- **2** Π_S^{ass} is confluent.
- 3 $Id(S) \cap kIrr(S) = 0.$
- $Id(S) \oplus \mathbf{k}Irr(S) = \mathbf{k}\mathfrak{M}(X).$
- **5** *S* is a Gröbner-Shirshov basis in $\mathbf{k}\mathfrak{M}(X)$ with respect to \geq .

Two reformulations of Rota's program

On the one hand, Rota's Program on Algebraic Operators can be interpreted in terms of rewriting systems.

Let $S \subseteq \mathbf{k}\mathfrak{M}(X)$ be a system of OPIs. We call the rewriting system *S* convergent if Π_S^{ass} is convergent.

Problem (Gao-Guo, [4])

(Rota's Program on Algebraic Operators via rewriting systems). *Determine all convergent systems of OPIs.*

On the other hand, Rota's Program on Algebraic Operators can also be interpreted in terms of Gröbner-Shirshov bases.

Problem (Gao-Guo, [4])

(Rota's Program on Algebraic Operators via Gröbner-Shirshov bases). *Determine all Gröbner-Shirshov bases systems of OPIs.*

The relationship between reformulations of Rota's Program on Algebraic Operators is also studied.

Corollary (Gao-Guo,[4])

With a monomial order \geq on $\mathfrak{M}(X)$, the two versions of Rota's Program on Algebraic Operators are equivalent.

Contents

Rota's program on algebraic operators

- Roles played by linear operators
- Rota's program on algebraic operators

Operated algebras

3 Rewriting systems and Gröbner-Shirshov bases

- Rewriting systems
- Gröbner-Shirshov bases
- Rota's programm answered by rewriting systems and GSB

Operated Hopf algebras

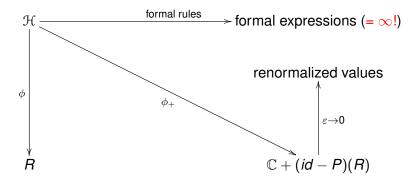
Algebraic Birkhoff decomposition

- Let \mathcal{H} be a connected filtered Hopf algebra, that is, \mathcal{H} has a decreasing filtration $\mathcal{H}_n \subseteq \mathcal{H}$, $n \ge 0$ that is compatible with the Hopf algebra structure of \mathcal{H} and $\mathcal{H}_0 = \mathbb{C}$.
- Let *R* be a commutative Rota-Baxter algebra (of weight $\lambda = -1$) with an idempotent Rota-Baxter operator *P*:

$$P(x)P(y) = P(xP(y) + P(x)y - xy)$$
 for $x, y \in R$.

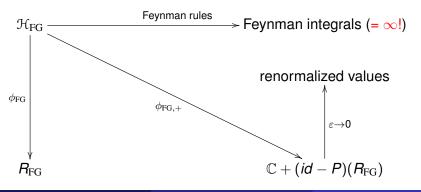
- Let $\phi : \mathcal{H} \to R$ be an algebra homomorphism.
- Theorem (Algebraic Birkhoff decomposition) Given a triple (H, R, φ) as above, there is a unique decomposition of algebra homomorphisms

$$\phi = \phi_{-}^{\star(-1)} \star \phi_{+}, \begin{cases} \phi_{-} : \mathcal{H} \to \mathbb{C} + P(R) & \text{(counter term),} \\ \phi_{+} : \mathcal{H} \to \mathbb{C} + (id - P)(R) & \text{(renormalization)} \end{cases}$$



QFT renormalization

- In quantum field theory renormalization, we take the triple $(\mathcal{H}_{\rm FG}, R_{\rm FG}, \phi_{\rm FG})$ with
- Hopf algebra \mathcal{H}_{FG} of Feynman graphs;
- $R_{FG} = C[\varepsilon^{-1}, \varepsilon]$ of Laurent series, with the pole part projection *P*;
- $\phi_{FG} : \mathcal{H}_{FG} \to \mathcal{R}_{FG}$ from dimensional regularized Feynman rule.
- Then Algebraic Birkhoff Decomposition gives



- The Connes-Kreimer Hopf algebra serves as a "baby model" of Feynmann diagrams in the algebraic approach of the renormalization in quantum field theory.
- The Connes-Kreimer Hopf algebra is built on top of rooted trees/forests, which are significant objects studied in algebra and combinatorics.
- Many other Hopf algebras has been built on rooted forests, such as Foissy-Holtkamp, Grossman-Larson and Loday-Ronco.
- A. Connes and D. Kreimer, Hopf algebras, renormalization and non-commutative geometry, *Comm. Math. Phys.* **199** (1998), 203-242.

- A rooted tree is a finite graph, connected and without cycles, with a special vertex called the root.
- A planar rooted tree is a rooted tree with a fixed embedding into the plane.

For example:

where the root of a tree is on the bottom.

An algebraic structure on planar rooted trees

- Let T denote the set of planar rooted trees and M(T) the free monoid generated by T.
- An element in *M*(T) is called a **planar rooted forest**. For example,

$$\mathbf{1} \quad \mathbf{V}, \quad \mathbf{\Psi} \quad \mathbf{V}, \quad \mathbf{V} \quad \mathbf{V}, \quad \mathbf{H} \quad \mathbf{Y} \quad \mathbf{H}, \quad \mathbf{W}$$

- The empty tree in $M(\mathcal{T})$ is denoted by 1.
- The triple $(\mathbf{k}M(\mathcal{T}), \text{conc}, 1)$ is a unitary associative algebra.

- In order to make kM(T) into a coalgebra, we now introduce the notion of cut of a tree t.
- We orient the edges of t upwards, from the root to the leaves.
- A non total cut c of a planar rooted tree t is a choice of edges of t.
 Deleting the chosen edges, the cut makes t into a forest denoted by W^c(t).
- The cut *c* is called admissible if any oriented path in the tree meets at most one cut edge.

• Consider
$$T = \frac{1}{\sqrt{2}}$$
.

- For such a cut c, the tree of W^c(t) which contains the root of t is denoted by R^c(t) and the concatenation product of the other trees of W^c(t) is denoted by P^c(t).
- We also add the total cut, which is by convention an admissible cut such that

$$R^{c}(t) = 1$$
 and $P^{c}(t) = W^{c}(t) = t$.

• Consider $T = \checkmark$. As it has 3 edges, it has 2^3 non total cuts.

$\operatorname{cut} c$	Y	¥	Ť	Y	Ţ	Ţ.	÷	÷	total
Admissible?	yes	yes	yes	yes	no	yes	yes	no	yes
$W^{c}(t)$	V	11	. v	Ŧ.		I	I		IV.
$R^{c}(t)$	V	I	V	Ŧ	\times	•	I	×	1
$P^{c}(t)$	1	1	•	•	\times	1.	••	×	IV.

• The coproduct

$$\Delta_{\mathsf{RT}}: \mathbf{k} \mathit{M}(\mathfrak{T}) \to \mathbf{k} \mathit{M}(\mathfrak{T}) \otimes \mathbf{k} \mathit{M}(\mathfrak{T})$$

is defined as the unique algebra homomorphism such that, for all $t \in T$,

$$\Delta_{\mathsf{RT}}(t) := \sum_{c \in \operatorname{Adm}(t)} \mathcal{P}^{c}(t) \otimes \mathcal{R}^{c}(t).$$

• Following the above example, we have

$\operatorname{cut} c$	Y	ł	Ť	۲.	Ţ	¥	÷	÷	total
Admissible?	yes	yes	yes	yes	no	yes	yes	no	yes
$W^{c}(t)$	V	11	. v	I.		.	:	••••	V
$R^{c}(t)$	V	I	V	Ŧ	×		I	×	1
$P^{c}(t)$	1	I	•	•	×	1.	••	×	\mathbf{V}

and

$$\Delta_{\mathsf{RT}}(t) = \mathbf{1} \otimes \mathbf{1} + \mathbf{1} \otimes \mathbf{1} = \mathbf{1} \otimes \mathbf{1} + \mathbf{1} \otimes \mathbf{1} = \mathbf{1} \otimes \mathbf{1} \otimes \mathbf{1} = \mathbf{1} \otimes \mathbf{1} \otimes \mathbf{1} \otimes \mathbf{1} = \mathbf{1} \otimes \mathbf{1} \otimes$$

Grafting operation

• Define the grafting operation

 B^+ : **k** $M(\mathfrak{T}) \to$ **k** $M(\mathfrak{T}), t_1 \cdots t_n \mapsto B^+(t_1 \cdots t_n),$

where $B^+(t_1 \cdots t_n)$ is the planar rooted tree obtained by grafting the roots of t_1, \cdots, t_n on a common new root.

• For example,

$$B^+(\bullet \mathbf{I}) = \mathbf{V}^{\mathbf{I}}.$$

 The coproduct Δ_{RT} on planar rooted trees is also defined recursively on depth by Δ_{RT}(1) := 1 ⊗ 1 and for t = B⁺(t̄),

$$\Delta_{\mathsf{RT}}(t) = \Delta_{\mathsf{RT}} B^+(\overline{t}) = t \otimes 1 + (id \otimes B^+) \Delta_{\mathsf{RT}}(\overline{t}).$$

This equation is called the 1-cocycle condition for B^+ .

• Also define a linear map

$$\epsilon_{\mathsf{RT}}: \mathbf{k} \mathcal{M}(\mathfrak{T}) \to \mathbf{k}, \quad \mathbf{1} \mapsto \mathbf{1}_{\mathbf{k}}, \quad \mathbf{1} \neq f \mapsto \mathbf{0}.$$

The triple (kM(T), Δ_{RT}, ε_{RT}) is a counitary coassociative coalgebra.

In summary,

Theorem (Connes-Kreimer, Foissy-Holtkamp)

The quintuple (**k** $M(\mathcal{T})$, conc, 1, Δ_{RT} , ϵ_{RT}) is a connected graded bialgebra and hence a Hopf algebra.

- A. Connes and D. Kreimer, Hopf algebras, renormalization and non-commutative geometry, *Comm. Math. Phys.* 199 (1998), 203-242.
- L. Foissy, Les algèbres de Hopf desarbres enracinés I, *Bull. Sci. Math.* **126** (2002), 193-239.
- R. Holtkamp, Comparison of Hopf algebras on Trees, Arch. Math. 80(4) (2003), 368-383.

- Excitingly, Bruned et. al [1] used typed decorated rooted trees to give a description of a renormalisation procedure of stochastic PDEs, published at Invent. math..
 - Y. Bruned, M. Hairer and L. Zambotti, Algebraic renormalisation of regularity structures, *Invent. math.* **215** (2019), 1039-1156.

Definition

- An operated bialgebra is a bialgebra $(H, m, u, \Delta, \varepsilon)$ which is also an operated algebra (H, P).
- A cocycle bialgebra is an operated bialgebra (H, m, u, Δ, ε) that satisfies the cocycle condition:

$$\Delta P = P \otimes 1 + (id \otimes P)\Delta.$$

If the bialgebra in a cocycle bialgebra is a Hopf algebra, then it is called a cocycle Hopf algebra.

53 / 60

Definition

The free cocycle bialgebra on a set X is a cocycle bialgebra

 $(H_X, m_X, u_X, \Delta_X, \varepsilon_X, P_X)$

together with a set map $j_X : X \to H_X$ with the property that, for any cocycle bialgebra $(H, m, u, \Delta, \varepsilon, P)$ and set map $f : X \to H$ whose images are primitive (that is, $\Delta(f(x)) = f(x) \otimes 1 + 1 \otimes f(x)$), there is a unique morphism $\overline{f} : H_X \to H$ of operated bialgebras such that $\overline{f} \circ j_X = f$.

The concept of a free cocycle Hopf algebra is defined in the same way.

Theorem (Zhang-Gao-Guo)

- The septuple (kM(ℑ), conc, 1, Δ_ε, ε_{RT}, B⁺) is the free cocycle bialgebra on the empty set Ø.
- The Hopf algebra given by the connected bialgebra (kM(T), conc, 1, Δ_{RT}, ε_{RT}, B⁺) is the free cocycle Hopf algebra on the empty set Ø.

Free operated bialgebras

- Let X be a set and let σ be a symbol not in the set X. Denote $\widetilde{X} := X \cup \{\sigma\}.$
- Let T(X̃) (resp. F(X̃) := M(T(X̃))) denote the set of rooted trees (resp. forests) whose vertices are decorated by elements of X̃.
- Solution State State

• Here are some elements in $\mathfrak{T}(\widetilde{X})$:

Theorem (Zhang-Gao-Guo)

Let $j_X : X \hookrightarrow \mathcal{F}_{\ell}(\widetilde{X}), x \mapsto \bullet_x$ be the natural embedding and m_{RT} the concatenation product. Then

- The septuple $(\mathbf{k}\mathcal{F}_{\ell}(\widetilde{X}), \text{ conc}, 1, \Delta_{\epsilon}, \epsilon_{RT}, B^+, j_X)$ is the free cocycle bialgebra on *X*.
- The Hopf algebra given by the connected bialgebra (k𝔅_ℓ(X̃), conc, 1, Δ_ϵ, ϵ_{RT}, B⁺, j_X) is the free cocycle Hopf algebra on X.

Reference

- G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, *Pacific J. Math.* **10** (1960), 731-742.
- V. Drersky and E. Fromanek, Polynomial Identity Rings, Birkhäuser, 2004.
- L. Guo and W. Keigher, On differential Rota-Baxter algebras, *J. Pure. Appl. Algebra* **212** (2008), 522-540.
- X. Gao and L. Guo, Rota's Classification Problem, rewriting systems and Gröbner-Shirshov bases, *Journal of Algebra* 470 (2017), 219-253.
- L. Guo, Operated semigroups, Motzkin paths and rooted trees, *J. Algebraic Combinatorics* **29** (2009), 35-62.
- L. Guo, W. Sit and R. Zhang, Differential type operators and Gröbner-Shirshov bases, *J. Symbolic Comput.* 52 (2013) 97-123.

Reference

- J. Kampéde Fériet, L'etat actuel du probléme de la turbulaence (l and ll), *La Sci. Aérienne* 3 (1934), 9-34, 4 (1935), 12-52.
- C. Procesi, Rings with Polynomial Identities, *Pure Appl. Math.*, vol. 17, Marcel Dekker, Inc., New York, 1973.
- G.-C. Rota, Baxter operators, an introduction, in Joseph P.S.Kung, Editor, Gian-Carlo Rota on Combinatorics, Introductory papers and commentaries, Birkhäuser, Boston, 504-512, 1995.
- T. Zhang, X. Gao and L. Guo, Reynolds algebras and their free objects from bracketed words and rooted trees, *J Pure Appl Algebra*, **225** (2021), 106766.
- S. Zheng, X. Gao, L. Guo and W. Sit, Rota-Baxter type operators, rewriting systems and Gröbner-Shirshov bases, *J. Symbolic Computation*, accepted, arXiv:1412.8055v1.

