Deformations of the restricted quantum group $\overline{U}_q(sl_2^*)$ and preprojective algebras

Joint work with Yongjun Xu

Jialei Chen

Beijing University of Technology

August 23, 2021, Chongqing

- Some notations
- **②** The restricted quantum group $\overline{U}_q(sl_2^*)$ and its Hopf PBW-deformations
- Sealization of the Hopf algebras $\overline{U}_q(sl_2^*,\kappa)$ via (deformed) preprojective algebra corresponding to Gabriel quiver
- **(**) The category of finite dimensional representations of $\overline{U}_q(sl_2^*)$

伺 と く ヨ と く ヨ と …

Some notations

In this talk, we works over the complex field $\mathbb{C}.$ Fix an integer $n\geq 3~(n\neq 4).$ we always assume that q is a primitive n-th root of unity, and

$$d = \begin{cases} n, & \text{if } n \text{ is odd,} \\ \frac{n}{2}, & \text{if } n \text{ is even.} \end{cases}$$

For a invertible element $v \in \mathbb{C}$, and any integer l > 0, set

$$(l)_v = 1 + v + \dots + v^{l-1} = \frac{v^l - 1}{v - 1}$$

Define the v-factorial of l by $(0)!_v = 1$ and for l > 0

$$(l)!_v = (1)_v (2)_v \cdots (l)_v.$$

$$\left(\begin{array}{c}k\\i\end{array}\right)_v = \frac{(k)!_v}{(i)!_v \cdot (k-i)!_v}$$

高 と く ヨ と く ヨ と

Some notations

In this talk, we works over the complex field $\mathbb{C}.$ Fix an integer $n\geq 3~(n\neq 4).$ we always assume that q is a primitive n-th root of unity, and

$$d = \begin{cases} n, & \text{if } n \text{ is odd,} \\ \frac{n}{2}, & \text{if } n \text{ is even.} \end{cases}$$

For a invertible element $v \in \mathbb{C}$, and any integer l > 0, set

$$(l)_v = 1 + v + \dots + v^{l-1} = \frac{v^l - 1}{v - 1}.$$

Define the v-factorial of l by $(0)!_v=1$ and for l>0

$$(l)!_v = (1)_v (2)_v \cdots (l)_v.$$

$$\left(\begin{array}{c}k\\i\end{array}\right)_v = \frac{(k)!_v}{(i)!_v \cdot (k-i)!_v}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The restricted quantum algebra $\overline{U}_q(sl_2^*)$ is the associative unital algebra generated by K, K^{-1}, E, F and subject to the following relations

$$KK^{-1} = K^{-1}K = 1, \quad K^d = 1, \quad E^d = F^d = 0$$

 $KE = q^2 EK, \quad KF = q^{-2}FK, \quad EF = FE.$

Remark

- The set $\{F^i K^k E^j | i, j, k \in \mathbb{Z}, 0 \le i, j, k < d\}$ is a basis of $\overline{U}_q(sl_2^*)$, and the dimension of $\overline{U}_q(sl_2^*)$ is equal to d^3 .
- As a \mathbb{C} -algebra, $\overline{U}_q(sl_2^*)$ is isomorphic to the smash product algebra $\overline{A} \sharp \mathbb{C}\overline{G}$, i.e., $\overline{U}_q(sl_2^*) \cong \overline{A} \sharp \mathbb{C}\overline{G}$, where the algebra \overline{A} and the abelian group \overline{G} are defined as follows

$$\overline{A} = \mathbb{C}\langle E, F | EF = FE, E^d = F^d = 0 \rangle,$$

$$\overline{G} = \langle K | K^d = 1 \rangle,$$

and the action of \overline{G} on \overline{A} is given by $K \circ E = q^2 E$ and $K \circ F = q^{-2} F$.

Remark

- The set $\{F^i K^k E^j | i, j, k \in \mathbb{Z}, 0 \le i, j, k < d\}$ is a basis of $\overline{U}_q(sl_2^*)$, and the dimension of $\overline{U}_q(sl_2^*)$ is equal to d^3 .
- As a \mathbb{C} -algebra, $\overline{U}_q(sl_2^*)$ is isomorphic to the smash product algebra $\overline{A} \sharp \mathbb{C}\overline{G}$, i.e., $\overline{U}_q(sl_2^*) \cong \overline{A} \sharp \mathbb{C}\overline{G}$, where the algebra \overline{A} and the abelian group \overline{G} are defined as follows

$$\overline{A} = \mathbb{C}\langle E, F | EF = FE, E^d = F^d = 0 \rangle,$$

$$\overline{G} = \langle K | K^d = 1 \rangle,$$

and the action of \overline{G} on \overline{A} is given by $K \circ E = q^2 E$ and $K \circ F = q^{-2} F$.

 $\overline{U}_q(sl_2^*)$ is a Hopf algebra with coproduct $\Delta,$ counit ε and antipode S defined by

$$\Delta(E) = E \otimes K + 1 \otimes E, \quad \Delta(F) = F \otimes 1 + K^{-1} \otimes F,$$

$$\Delta(K) = K \otimes K, \quad \Delta(K^{-1}) = K^{-1} \otimes K^{-1},$$

$$\varepsilon(E) = 0, \quad \varepsilon(F) = 0, \quad \varepsilon(K) = \varepsilon(K^{-1}) = 1,$$

$$S(E) = -EK^{-1}, \quad S(F) = -KF, \quad S(K) = K^{-1}.$$

御 と くきと くきと

 $\overline{U}_q(sl_2^*)$ is pointed, basic, and nonsemisimple.

Sketch of proof. Let $rad(\overline{U}_q(sl_2^*))$ be the radical of $\overline{U}_q(sl_2^*)$. Denote by $\langle E, F \rangle$ the ideal of $\overline{U}_q(sl_2^*)$ generated by E and F. Note that the ideal $\langle E, F \rangle$ is nilpotent and

$$\overline{U}_q(sl_2^*)/\langle E,F\rangle = \mathbb{C}\langle K|K^d = 1\rangle \cong \mathbb{C}\times\mathbb{C}\times\cdots\times\mathbb{C},$$

therefore $\overline{U}_q(sl_2^*)$ is a basic Hopf algebra. We also get that $rad(\overline{U}_q(sl_2^*)) = \langle E, F \rangle$, and then the nonsemisimplicity of $\overline{U}_q(sl_2^*)$ is obtained. Pointed is clearly.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

 $\overline{U}_q(sl_2^*)$ is pointed, basic, and nonsemisimple.

Sketch of proof. Let $\operatorname{rad}(\overline{U}_q(sl_2^*))$ be the radical of $\overline{U}_q(sl_2^*)$. Denote by $\langle E, F \rangle$ the ideal of $\overline{U}_q(sl_2^*)$ generated by E and F. Note that the ideal $\langle E, F \rangle$ is nilpotent and

$$\overline{U}_q(sl_2^*)/\langle E,F\rangle = \mathbb{C}\langle K|K^d = 1\rangle \cong \mathbb{C} \times \mathbb{C} \times \cdots \times \mathbb{C},$$

therefore $\overline{U}_q(sl_2^*)$ is a basic Hopf algebra. We also get that $rad(\overline{U}_q(sl_2^*)) = \langle E, F \rangle$, and then the nonsemisimplicity of $\overline{U}_q(sl_2^*)$ is obtained. Pointed is clearly.

★御★ ★注★ ★注★ 二注

The quantum algebra $\overline{U}_q(sl_2^*,\kappa)$ is the associative \mathbb{C} -algebra with unit 1 generated by E, F, K, and K^{-1} , subject to the following relations

$$KE = q^2 EK, \quad KF = q^{-2}FK, \quad KK^{-1} = K^{-1}K = 1,$$

 $K^d = 1 \quad , E^d = F^d = 0, \quad EF - FE = a(K^m - K^{-m}),$
where $m \in \mathbb{Z}$ and $1 \le m < d.$

同 ト イ ヨ ト イ ヨ ト

We call $\overline{U}_q(sl_2^*,\kappa)$ a Hopf PBW-deformation of $\overline{U}_q(sl_2^*)$, if $\overline{U}_q(sl_2^*,\kappa)$ is a PBW-deformation of $\overline{U}_q(sl_2^*)$, and has the Hopf algebra structure as follows

$$\Delta(K) = K \otimes K, \quad \Delta(K^{-1}) = K^{-1} \otimes K^{-1},$$

$$\Delta(E) = E \otimes K^{t} + K^{s} \otimes E, \quad \Delta(F) = F \otimes K^{-s} + K^{-t} \otimes F,$$

$$\varepsilon(K) = \varepsilon(K^{-1}) = 1, \quad \varepsilon(E) = \varepsilon(F) = 0,$$

$$S(K) = K^{-1}, \quad S(K^{-1}) = K,$$

$$S(E) = -K^{-s}EK^{-t}, \quad S(F) = -K^{t}FK^{s},$$

(1)

where $s, t \in \mathbb{Z}$ with t - s = m.

Remark

For a given m, all the $U_a(sl_2^*,\kappa)$ with t-s=m are isomorphic

(人間) (人) (人) (人) (人) (人)

We call $\overline{U}_q(sl_2^*,\kappa)$ a Hopf PBW-deformation of $\overline{U}_q(sl_2^*)$, if $\overline{U}_q(sl_2^*,\kappa)$ is a PBW-deformation of $\overline{U}_q(sl_2^*)$, and has the Hopf algebra structure as follows

$$\Delta(K) = K \otimes K, \quad \Delta(K^{-1}) = K^{-1} \otimes K^{-1},$$

$$\Delta(E) = E \otimes K^{t} + K^{s} \otimes E, \quad \Delta(F) = F \otimes K^{-s} + K^{-t} \otimes F,$$

$$\varepsilon(K) = \varepsilon(K^{-1}) = 1, \quad \varepsilon(E) = \varepsilon(F) = 0,$$

$$S(K) = K^{-1}, \quad S(K^{-1}) = K,$$

$$S(E) = -K^{-s}EK^{-t}, \quad S(F) = -K^{t}FK^{s},$$

(1)

where $s, t \in \mathbb{Z}$ with t - s = m.

Remark

For a given m, all the $\overline{U}_q(sl_2^*,\kappa)$ with t-s=m are isomorphic.

イロン イボン イヨン イヨン

The quantum algebra $\overline{U}_q(sl_2^*,\kappa)$ is a Hopf PBW-deformation of $\overline{U}_q(sl_2^*)$ if and only if (2m,n) = 1 when n is odd, while $(m,\frac{n}{2}) = 1$ when n is even.

_emma

Assume that
$$n$$
 is odd (resp. even) and $1 \le m < d$. Then
 $\begin{pmatrix} d \\ i \end{pmatrix}_{q^{2m}} = 0$ for $0 < i < d$ if and only if $(2m, d) = 1$ (resp.
 $(m, d) = 1$).

The quantum algebra $\overline{U}_q(sl_2^*,\kappa)$ is a Hopf PBW-deformation of $\overline{U}_q(sl_2^*)$ if and only if (2m,n) = 1 when n is odd, while $(m,\frac{n}{2}) = 1$ when n is even.

Lemma

Assume that n is odd (resp. even) and
$$1 \le m < d$$
. Then
 $\begin{pmatrix} d \\ i \end{pmatrix}_{q^{2m}} = 0$ for $0 < i < d$ if and only if $(2m, d) = 1$ (resp.
 $(m, d) = 1$).

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof. Firstly, $U_q(sl_2^*, \kappa)$ is a PBW-deformation of $U_q(sl_2^*)$ when q is a primitive *n*-th root of unity with $n \ge 3(n \ne 4)$. Note that

$$\overline{U}_q(sl_2^*) \cong U_q(sl_2^*)/\langle K^d - 1, E^d, F^d \rangle, \overline{U}_q(sl_2^*, \kappa) \cong U_q(sl_2^*, \kappa)/\langle K^d - 1, E^d, F^d \rangle,$$

then $\overline{U}_q(sl_2^*,\kappa)$ is a PBW-deformation of $\overline{U}_q(sl_2^*)$ as $\langle K^d-1, E^d, F^d\rangle$ is a homogenous ideal. Secondly, $\overline{U}_q(sl_2^*,\kappa)$ is a Hopf algebra with the structure maps in (1) if and only if (2m,n)=1 when n is odd, while $(m,\frac{n}{2})=1$ when n is even.

伺 と く ヨ と く ヨ と

2. Realizations of the quantum groups $\overline{U}_q(sl_2^*,\kappa)$ via (deformed) preprojective algebras

For
$$0\leq j\leq d-1$$
, set $\epsilon_j=rac{1}{d}\sum_{i=0}^{d-1}q^{2ij}K^i$

then

$$\sum_{i=0}^{d-1} \epsilon_i = \frac{1}{d} \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} q^{2ij} K^j = \frac{1}{d} \sum_{j=0}^{d-1} \left(\sum_{i=0}^{d-1} \left(q^{2j} \right)^i \right) K^j = 1,$$

$$\epsilon_j \epsilon_l = \frac{1}{d} \sum_{s=0}^{d-1} q^{2ls} \epsilon_j K^s = \frac{1}{d} \sum_{s=0}^{d-1} \left(q^{2(l-j)} \right)^s \epsilon_j = \begin{cases} \epsilon_j, & \text{if } l = j, \\ 0, & \text{if } l \neq j. \end{cases}$$

Lemma

 $\{\epsilon_0, \cdots, \epsilon_{d-1}\}$ is a complete set of primitive orthogonal idempotents of $\overline{U}_q(sl_2^*)$.

2. Realizations of the quantum groups $\overline{U}_q(sl_2^*,\kappa)$ via (deformed) preprojective algebras

For
$$0\leq j\leq d-1$$
, set $\epsilon_j=rac{1}{d}\sum_{i=0}^{d-1}q^{2ij}K^i$

then

$$\sum_{i=0}^{d-1} \epsilon_i = \frac{1}{d} \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} q^{2ij} K^j = \frac{1}{d} \sum_{j=0}^{d-1} \left(\sum_{i=0}^{d-1} \left(q^{2j} \right)^i \right) K^j = 1,$$

$$\epsilon_j \epsilon_l = \frac{1}{d} \sum_{s=0}^{d-1} q^{2ls} \epsilon_j K^s = \frac{1}{d} \sum_{s=0}^{d-1} \left(q^{2(l-j)} \right)^s \epsilon_j = \begin{cases} \epsilon_j, & \text{if } l = j \\ 0, & \text{if } l \neq j \end{cases}$$

Lemma

 $\{\epsilon_0, \cdots, \epsilon_{d-1}\}$ is a complete set of primitive orthogonal idempotents of $\overline{U}_q(sl_2^*)$.

500

We draw the Gabriel quiver $\Gamma = (\Gamma_0, \Gamma_1)$ corresponding to $\overline{U}_q(sl_2^*)$ (1) There are d vertexes $s_0, s_1, \cdots, s_{d-1}$ in Γ_0 which are in correspondence with the idempotents $\epsilon_0, \epsilon_1, \cdots, \epsilon_{d-1}$; (2) As linear spaces, $\operatorname{rad}(\overline{U}_q(sl_2^*)) = \bigoplus_{\substack{1 \leq i < d \\ 0 \leq k < d-1}} \mathbb{C}F^i K^k \oplus \bigoplus_{\substack{1 \leq i < d \\ 0 \leq k < d-1}} \mathbb{C}E^i K^k \oplus \bigoplus_{\substack{1 \leq r, s < d \\ 0 \leq k < d-1}} \mathbb{C}F^r K^k E^s,$ $\operatorname{rad}^2(\overline{U}_q(sl_2^*)) = \bigoplus_{\substack{2 \leq i < d \\ 0 \leq k < d-1}} \mathbb{C}F^i K^k \oplus \bigoplus_{\substack{2 \leq i < d \\ 0 \leq k < d-1}} \mathbb{C}E^i K^k \oplus \bigoplus_{\substack{1 \leq r, s < d \\ 0 \leq k < d-1}} \mathbb{C}F^r K^k E^s.$

 $\dim \left[\operatorname{rad}(\overline{U}_q(sl_2^*)) \right] = d^3 - d, \quad \dim \left[\operatorname{rad}^2(\overline{U}_q(sl_2^*)) \right] = d^3 - 3d.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

We draw the Gabriel quiver $\Gamma = (\Gamma_0, \Gamma_1)$ corresponding to $\overline{U}_q(sl_2^*)$ (1) There are d vertexes $s_0, s_1, \cdots, s_{d-1}$ in Γ_0 which are in correspondence with the idempotents $\epsilon_0, \epsilon_1, \cdots, \epsilon_{d-1}$; (2) As linear spaces,

$$\begin{split} \operatorname{rad} & \left(\overline{U}_q(sl_2^*) \right) = \bigoplus_{\substack{1 \leq i < d \\ 0 \leq k < d - 1}} \mathbb{C}F^i K^k \oplus \bigoplus_{\substack{1 \leq i < d \\ 0 \leq k < d - 1}} \mathbb{C}E^i K^k \oplus \bigoplus_{\substack{1 \leq r, s < d \\ 0 \leq k < d - 1}} \mathbb{C}F^r K^k E^s, \\ \operatorname{rad}^2 & \left(\overline{U}_q(sl_2^*) \right) = \bigoplus_{\substack{2 \leq i < d \\ 0 \leq k < d - 1}} \mathbb{C}F^i K^k \oplus \bigoplus_{\substack{2 \leq i < d \\ 0 \leq k < d - 1}} \mathbb{C}E^i K^k \oplus \bigoplus_{\substack{1 \leq r, s < d \\ 0 \leq k < d - 1}} \mathbb{C}F^r K^k E^s. \\ \dim \left[\operatorname{rad} \left(\overline{U}_q(sl_2^*) \right) \right] = d^3 - d, \quad \dim \left[\operatorname{rad}^2 \left(\overline{U}_q(sl_2^*) \right) \right] = d^3 - 3d. \end{split}$$

伺 と く ヨ と く ヨ と

Therefore,

$$\operatorname{rad}(\overline{U}_q(sl_2^*))/\operatorname{rad}^2(\overline{U}_q(sl_2^*)) = \bigoplus_{0 \le k < d-1} \mathbb{C}FK^k \oplus \bigoplus_{0 \le k < d-1} \mathbb{C}EK^k.$$

For any two vertexes $a, b \in \Gamma_0$, note that

$$K^i \epsilon_a = q^{-2ai} \epsilon_a, \ K^i = \sum_{j \in \mathbb{Z}_d} q^{-2ij} \epsilon_j, \ E \epsilon_a = \epsilon_{a-1} E, \ F \epsilon_a = \epsilon_{a+1} F,$$

we have

$$\epsilon_a \left(\operatorname{rad}(\overline{U}_q(sl_2^*)) / \operatorname{rad}^2(\overline{U}_q(sl_2^*)) \right) \epsilon_b = \begin{cases} \mathbb{C}E\epsilon_b, & \text{if } b = a+1, \\ \mathbb{C}F\epsilon_b, & \text{if } a = b+1, \\ 0, & \text{otherwise.} \end{cases}$$

< ∃ →

2.1 The Gabriel quiver $\Gamma = (\Gamma_0, \Gamma_1)$ corresponding to $\overline{U}_q(sl_2^*)$

Therefore, we obtain the Gabriel quiver Γ as follows:

which is just the double quiver of affine Dynkin type A_{d-1} .

Assume that $a \in \mathbb{C}$ and $1 \leq m < d$ satisfying

$$\begin{cases} m = 1, & \text{when } a = 0, \\ (2m, d) = 1, & \text{when } a \neq 0 \text{ and } n \text{ is odd,} \\ (m, d) = 1, & \text{when } a \neq 0 \text{ and } n \text{ is even.} \end{cases}$$

We define $\Pi^m_a(\Gamma)$ to be the following quotient algebra of path algebra $\mathbb{C}\Gamma:$

$$\Pi_a^m(\Gamma) = \frac{\mathbb{C}\Gamma}{\left\langle \sum_{i \in \mathbb{Z}_d} \left(\alpha_i^* \alpha_i - \alpha_{i-1} \alpha_{i-1}^* - a(q^{-2mi} - q^{2mi}) s_i \right) \right\rangle}.$$

|| 白戸 || (三) (三)

Remark

 $\Pi_0^1(\Gamma)$ is just the preprojective algebra corresponding to Γ , while $\Pi_a^m(\Gamma)(a \neq 0)$ is a deformed preprojective algebra.

Remark

In $\mathbb{C}\Gamma$ or $\Pi_a^m(\Gamma)$, the paths are from right to left: for paths α and β , which starts at s_i (resp. s_j), and ends at s_j (resp. s_k), then the multiplication of α and β in $\mathbb{C}\Gamma$ or $\Pi_a^m(\Gamma)$ is denoted by

$$\alpha * \beta = \beta \alpha.$$

In the following proposition we will prove that there are some natural Hopf algebra structures on $\Pi_a^m(\Gamma)$.

- 4 同 ト 4 目 ト 4 目 ト

Remark

 $\Pi_0^1(\Gamma)$ is just the preprojective algebra corresponding to Γ , while $\Pi_a^m(\Gamma)(a \neq 0)$ is a deformed preprojective algebra.

Remark

In $\mathbb{C}\Gamma$ or $\Pi_a^m(\Gamma)$, the paths are from right to left: for paths α and β , which starts at s_i (resp. s_j), and ends at s_j (resp. s_k), then the multiplication of α and β in $\mathbb{C}\Gamma$ or $\Pi_a^m(\Gamma)$ is denoted by

$$\alpha * \beta = \beta \alpha.$$

In the following proposition we will prove that there are some natural Hopf algebra structures on $\Pi_a^m(\Gamma)$.

(4月) (4日) (4日)

The algebra $\Pi^m_a(\Gamma)$ is a Hopf alagebra with comultiplication Δ , counit ε and antipode S as follows:

$$\Delta(s_l) = \sum_{i+j=l} s_i \otimes s_j, \quad \varepsilon(s_l) = \delta_{l,0}, \quad S(s_l) = s_{-l},$$

$$\Delta(\alpha_l) = \sum_{i+j=l} q^{-2si} s_i \otimes \alpha_j + \sum_{i+j=l} q^{-2tj} \alpha_i \otimes s_j,$$

$$S(\alpha_l) = -q^{-2l(t+s)-2s} \alpha_{-l-1}, \quad \varepsilon(\alpha_l) = 0,$$

$$\Delta(\alpha_l^*) = \sum_{i+j=l} q^{2ti} s_i \otimes \alpha_j^* + \sum_{i+j=l} q^{2sj} \alpha_i^* \otimes s_j,$$

$$S(\alpha_l^*) = -q^{2l(t+s)+2s} \alpha_{-l-1}^*, \quad \varepsilon(\alpha_l^*) = 0.$$
(2)

where $i, j, l \in \mathbb{Z}_d$, $s, t \in \mathbb{Z}$ and t - s = m.

Proof. (1) We firstly show that the formulas in (2) can induce the following algebra homomorphisms

$$\begin{cases} \Delta: \Pi_a^m(\Gamma) \longrightarrow \Pi_a^m(\Gamma) \otimes \Pi_a^m(\Gamma) \\ \varepsilon: \Pi_a^m(\Gamma) \longrightarrow \mathbb{C}, \\ S: \Pi_a^m(\Gamma) \longrightarrow [\Pi_a^m(\Gamma)]^{op}. \end{cases}$$

By the universal property of path algebra and fundamental homomorphism theorem of algebras, we only need to check that

$$\begin{cases} \sum_{l \in \mathbb{Z}_d} \phi(s_l) = 1, \\ \phi(s_l)^2 = \phi(s_l), \\ \phi(s_k)\phi(s_l) = 0 \text{ for } k \neq l, \\ \phi(\alpha_l) = \phi(s_{l+1})\phi(\alpha_l)\phi(s_l), \\ \phi(\alpha_l^*) = \phi(s_l)\phi(\alpha_l^*)\phi(s_{l+1}), \\ \phi(\alpha_l^*)\phi(\alpha_l) - \phi(\alpha_{l-1})\phi(\alpha_{l-1}^*) = a(q^{-2ml} - q^{2ml})\phi(s_l), \end{cases}$$
(3)

where $\phi = \Delta$ (resp. $\phi = \varepsilon$) and 1 is the identity element in $\Pi_a^m(\Gamma) \otimes \Pi_a^m(\Gamma)$ (resp. C), and

御 と く き と く き と …

$$\begin{cases} \sum_{l \in \mathbb{Z}_d} S(s_l) = 1, \\ S(s_l)^2 = S(s_l), \\ S(s_k)S(s_l) = 0 \text{ for } k \neq l, \\ S(\alpha_l) = S(s_l)S(\alpha_l)S(s_{l+1}), \\ S(\alpha_l^*) = S(s_{l+1})S(\alpha_l^*)S(s_l), \\ S(\alpha_l)S(\alpha_l^*) - S(\alpha_{l-1}^*)S(\alpha_{l-1}) = a(q^{-2ml} - q^{2ml})S(s_l), \end{cases}$$
(4)

where 1 is the identity element in $\Pi_a^m(\Gamma)$.

(本部) (《注》 (注》) [注

(2) By part (1), to prove $(\Pi^m_a(\Gamma),\Delta,\varepsilon,S)$ is a Hopf algebra, we only need to check that

$$\begin{cases} (\Delta \otimes id)\Delta(x) = (id \otimes \Delta)\Delta(x), \\ (\varepsilon \otimes id)\Delta(x) = id = (id \otimes \varepsilon)\Delta(x), \\ (S \otimes id)\Delta(x) = \varepsilon(x)1 = (id \otimes S)\Delta(x) \end{cases}$$

for any $x \in \Gamma_0 \cup \Gamma_1 = \{s_l, \alpha_l, \alpha_l^* | l \in \mathbb{Z}_d\}.$

- 4 同 1 4 日 1 4 日 1 9 9 9 9 9 9

For any integer l > 0, define (q, t, s)-number

$$(l)_{q,t,s} = \frac{q^{tl} - q^{sl}}{q^t - q^s}.$$
(5)

Define the (q,t,s)-factorial of l by $(0)!_{q,t,s} = 1$ and for l > 0

$$(l)!_{q,t,s} = (1)_{q,t,s}(2)_{q,t,s}\cdots(l)_{q,t,s}.$$
(6)

We define the $(q,t,s)\text{-}\mathsf{Gauss}$ polynomials for $0\leq k\leq l$ by

$$\begin{pmatrix} l\\ k \end{pmatrix}_{q,t,s} = \frac{(l)!_{q,t,s}}{(k)!_{q,t,s}(l-k)!_{q,t,s}}.$$
(7)

(金融) (종) (종) (종)

Let $0 \le k \le l$. (1) $\begin{pmatrix} l \\ k \end{pmatrix}_{q,1,0} = \begin{pmatrix} l \\ k \end{pmatrix}_{q}, \quad \begin{pmatrix} l \\ k \end{pmatrix}_{q,t,s} = \begin{pmatrix} l \\ l-k \end{pmatrix}_{q,t,s}.$ (2) ((q, t, s)-Pascal identity) $\begin{pmatrix} l \\ l \end{pmatrix}_{q,t,s} = (l + l) \begin{pmatrix} l-1 \\ l \end{pmatrix}_{q,t,s} = (l + l) \begin{pmatrix} l-1 \\ l \end{pmatrix}_{q,t,s}.$

$$\begin{pmatrix} t \\ k \end{pmatrix}_{q,t,s} = q^{s(l-k)} \begin{pmatrix} t-1 \\ k-1 \end{pmatrix}_{q,t,s} + q^{tk} \begin{pmatrix} t-1 \\ k \end{pmatrix}_{q,t,s}$$
$$= q^{sk} \begin{pmatrix} l-1 \\ k \end{pmatrix}_{q,t,s} + q^{t(l-k)} \begin{pmatrix} l-1 \\ k-1 \end{pmatrix}_{q,t,s}.$$

Proof.

$$\begin{cases} (l)_{q,t,s} = q^{s(l-1)}(l)_{q^m}, \\ (l)_{q,t,s} = q^{\frac{sl(l-1)}{2}}(l)_{q^m}, \\ \begin{pmatrix} l \\ k \end{pmatrix}_{q,t,s} = q^{sk(l-k)} \begin{pmatrix} l \\ k \end{pmatrix}_{q^m}, \end{cases}$$
(8)

we can obtain all the above results by using Proposition IV.2.1 in [Kassel, C. Quantum Groups, Graduate Texts in Mathematics; Springer-Verlag, 1995; Vol. 155.]

同 ト イ ヨ ト イ ヨ ト

Lemma

For $l \geq 0$, let $\gamma_i^l = \alpha_{i+l-1} \cdots \alpha_{i+1} \alpha_i$, which starts at the vertex s_i and has length l, and $\gamma_i^0 = s_i$. Let $(\gamma_i^l)^* = \alpha_i^* \alpha_{i+1}^* \cdots \alpha_{i+l-1}^*$. Then we have

$$\Delta(\gamma_i^l) = \sum_{j+k=i,u+v=l} \binom{l}{v}_{q^{-2},t,s} q^{-2tku-2sjv} \gamma_j^u \otimes \gamma_k^v,$$

$$\Delta((\gamma_i^l)^*) = \sum_{j+k=i,u+v=l} \binom{l}{v}_{q^2,t,s} q^{2tjv+2sku} (\gamma_j^u)^* \otimes (\gamma_k^v)^*.$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Lemma

In $\Pi_0^1(\Gamma)$, for any integer $i, j \in \mathbb{Z}_d$, we have

$$\alpha_{j+v-1}^{*}\gamma_{j}^{v} = \gamma_{j-1}^{v}\alpha_{j-1}^{*}, \qquad (9)$$

$$(\gamma_{i}^{u})^{*}\gamma_{i}^{v} = \gamma_{i}^{v} \dots (\gamma_{i}^{u} \dots)^{*}, \qquad (10)$$

where u + i = v + j.

Let $I_d =: \langle \gamma_i^d, (\gamma_i^d)^* | i \in \mathbb{Z}_d \rangle$ be the ideal of $\Pi_a^m(\Gamma)$, and $\Pi_a^m(\Gamma, I_d)$ be the quotient of (deformed) preprojective algebra $\Pi_a^m(\Gamma)$ module I_d , i.e.,

 $\Pi_a^m(\Gamma, I_d) := \Pi_a^m(\Gamma)/I_d.$

Then the following statements hold.

(1) $(\Pi_a^m(\Gamma, I_d), \Delta, \varepsilon, S)$ is a Hopf algebra with Δ , ε and S defined in (2).

(2) $\Pi^m_a(\Gamma, I_d)$ has a basis $\{\gamma^u_i(\gamma^v_i)^* | u, v, i \in \mathbb{Z}_d\}$ and

 $\dim \Pi_a^m(\Gamma, I_d) = d^3.$

く 戸 と く ヨ と く ヨ と …

2.3 The quotient (deformed) preprojective algebra $\Pi^m_a(\Gamma)$

Sketch of proof. (1) We prove I_d is a Hopf ideal of $\Pi_a^m(\Gamma)$.

$$\Delta(\gamma_i^d) = \sum_{j+k=i} \left(\gamma_j^0 \otimes \gamma_k^d + \gamma_j^d \otimes \gamma_k^0 \right),$$

$$\Delta((\gamma_i^d)^*) = \sum_{j+k=i} \left[(\gamma_j^0)^* \otimes \gamma_k^d + (\gamma_j^d)^* \otimes (\gamma_k^0)^* \right],$$

which implies $\Delta(I_d) \subseteq \Pi_a^m(\Gamma) \otimes I_d + I_d \otimes \Pi_a^m(\Gamma)$. Obviously we have $\varepsilon(\gamma_i^d) = 0$ and $\varepsilon((\gamma_i^d)^*) = 0$. Hence $\varepsilon(I_d) = 0$. Moreover, since

$$S(\gamma_{i}^{d}) = S(\alpha_{i})S(\alpha_{i+1})\cdots S(\alpha_{i+d-2})S(\alpha_{i+d-1})$$

= $(-1)^{d}q^{-d(d-1)(t+s)}\gamma_{-i-d}^{d},$
$$S((\gamma_{i}^{d})^{*}) = S(\alpha_{i+d-1}^{*})S(\alpha_{i+d-2}^{*})\cdots S(\alpha_{i+1}^{*})S(\alpha_{i}^{*})$$

= $(-1)^{d+1}q^{d(d-1)(t+s)}(\gamma_{-i-d}^{d})^{*},$

then $S(I_d) \subseteq I_d$.

(2) We firstly show that $\Pi_0^1(\Gamma, I_d)$ has a basis

 $\{\gamma_i^u(\gamma_i^v)^* | u, v, i \in \mathbb{Z}_d\}$ and $\dim \Pi_0^1(\Gamma, \mathbf{I}_d) = \mathbf{d}^3$.

- any nonzero monomial $g \in \Pi^1_0(\Gamma, I_d)$ is a linear combination of $\{\gamma^u_i(\gamma^v_i)^* | u, v, i \in \mathbb{Z}_d\}$,
- $\{\gamma_i^u(\gamma_i^v)^*|u,v,i\in\mathbb{Z}_d\}$ is linear independent: in fact,

$$0 = \sum_{u,v,i \in \mathbb{Z}_d} c_i^{u,v} \gamma_i^u (\gamma_i^v)^* = \sum_{l=0}^{2(d-1)} \sum_{\substack{u,v,i \in \mathbb{Z}_d, \\ u+v=l}} c_i^{u,v} \gamma_i^u (\gamma_i^v)^*,$$

 $\{\gamma_i^u(\gamma_i^v)^*|u,v,i\in\mathbb{Z}_d,u+v=l\}$ have different sources and targets. Hence $c_i^{u,v}=0$, and independent.

伺 と く ヨ と く ヨ と … ヨ

As for $\Pi_a^m(\Gamma, I_d)$, by Corollary 3.6 in [Crawley-Boevey W. Holland M.P. Noncommutative deformations of Kleinian singularities. Duke Mathematical Journal, 1998, 92(3): 605-635,] $\Pi_a^m(\Gamma)$ is a PBW-deformation of $\Pi_0^1(\Gamma)$. So $\Pi_a^m(\Gamma, I_d)$ is a PBW-deformation of $\Pi_0^1(\Gamma, I_d)$. Therefore, the statements in (2) hold for(deformed) preprojective algebra $\Pi_a^m(\Gamma)$.

2.4 Realization of $\overline{U}_q(sl_2^*,\kappa)$ by (deformed) preprojective algebra $\Pi^m_a(\Gamma)$

Theorem

There is a Hopf isomorphism $\widetilde{\varphi}: \Pi_a^m(\Gamma, I_d) \to \overline{U}_q(sl_2^*, \kappa)$. In particular, when a = 0 and m = 1, there is a Hopf isomorphism $\widetilde{\varphi}: \Pi_0^1(\Gamma, I_d) \to \overline{U}_q(sl_2^*)$.

- S. Yang. Quantum groups and deformations of preprojective algebras. J. Algebra 279(2004): 3-21 proved that the restricted quantum group $\overline{U}_q(sl_2)$ is isomorphic to the quotient of the deformation of preprojective algebra.
- H. Huang, S. Yang. Quantum groups and double quiver algebras. Lett. Math. Phys 71(2005): 49-61 proved that a restricted version of the quantized enveloping algebras $U_q(g)$ is a quotient of the double quiver algebra kQ.
- L. Liu, S. Yang. Hopf ε-algebras on path coalgebras. J. Math.
 Studies 40(2007): 258-265 proved that U_q(sl₂) and U_q(osp(2,1)) are realized by the quotient of the algebra on double path coalgebra.

There is a Hopf isomorphism $\widetilde{\varphi}: \Pi_a^m(\Gamma, I_d) \to \overline{U}_q(sl_2^*, \kappa)$. In particular, when a = 0 and m = 1, there is a Hopf isomorphism $\widetilde{\varphi}: \Pi_0^1(\Gamma, I_d) \to \overline{U}_q(sl_2^*)$.

- S. Yang. Quantum groups and deformations of preprojective algebras. J. Algebra 279(2004): 3-21 proved that the restricted quantum group $\overline{U}_q(sl_2)$ is isomorphic to the quotient of the deformation of preprojective algebra.
- H. Huang, S. Yang. Quantum groups and double quiver algebras. Lett. Math. Phys 71(2005): 49-61 proved that a restricted version of the quantized enveloping algebras Uq(g) is a quotient of the double quiver algebra kQ.
- L. Liu, S. Yang. Hopf ε-algebras on path coalgebras. J. Math.
 Studies 40(2007): 258-265 proved that U_q(sl₂) and U_q(osp(2,1)) are realized by the quotient of the algebra on double path coalgebra.

There is a Hopf isomorphism $\widetilde{\varphi} : \Pi_a^m(\Gamma, I_d) \to \overline{U}_q(sl_2^*, \kappa)$. In particular, when a = 0 and m = 1, there is a Hopf isomorphism $\widetilde{\varphi} : \Pi_0^1(\Gamma, I_d) \to \overline{U}_q(sl_2^*)$.

- S. Yang. Quantum groups and deformations of preprojective algebras. J. Algebra 279(2004): 3-21 proved that the restricted quantum group $\overline{U}_q(sl_2)$ is isomorphic to the quotient of the deformation of preprojective algebra.
- H. Huang, S. Yang. Quantum groups and double quiver algebras. Lett. Math. Phys 71(2005): 49-61 proved that a restricted version of the quantized enveloping algebras $U_q(g)$ is a quotient of the double quiver algebra kQ.
- L. Liu, S. Yang. Hopf ε -algebras on path coalgebras. J. Math. Studies 40(2007): 258-265 proved that $U_q(sl_2)$ and $U_q(osp(2,1))$ are realized by the quotient of the algebra on double path coalgebra.

There is a Hopf isomorphism $\widetilde{\varphi}: \Pi_a^m(\Gamma, I_d) \to \overline{U}_q(sl_2^*, \kappa)$. In particular, when a = 0 and m = 1, there is a Hopf isomorphism $\widetilde{\varphi}: \Pi_0^1(\Gamma, I_d) \to \overline{U}_q(sl_2^*)$.

- S. Yang. Quantum groups and deformations of preprojective algebras. J. Algebra 279(2004): 3-21 proved that the restricted quantum group $\overline{U}_q(sl_2)$ is isomorphic to the quotient of the deformation of preprojective algebra.
- H. Huang, S. Yang. Quantum groups and double quiver algebras. Lett. Math. Phys 71(2005): 49-61 proved that a restricted version of the quantized enveloping algebras $U_q(g)$ is a quotient of the double quiver algebra kQ.
- L. Liu, S. Yang. Hopf ε -algebras on path coalgebras. J. Math. Studies 40(2007): 258-265 proved that $U_q(sl_2)$ and $U_q(osp(2,1))$ are realized by the quotient of the algebra on double path coalgebra.

Proof. Step 1. Construct a surjective map $\varphi : \mathbb{C}\Gamma \longrightarrow \overline{U}_q(sl_2^*, \kappa)$. Define a pair of maps $\varphi_0 : \Gamma_0 \longrightarrow \overline{U}_q(sl_2^*, \kappa)$ and $\varphi_1 : \Gamma_1 \longrightarrow \overline{U}_q(sl_2^*, \kappa)$ by setting

$$\varphi_0(s_l) = \epsilon_l, \quad \varphi_1(\alpha_l) = E\epsilon_{l+1}, \quad \varphi_1(\alpha_l^*) = F\epsilon_l$$

for each $l \in \mathbb{Z}_d$. It is easy to check that φ_0, φ_1 satisfy

$$\begin{cases} \sum_{l \in \mathbb{Z}_d} \varphi_0(s_l) = 1, \\ \varphi_0(s_l)^2 = \varphi_0(s_l), \\ \varphi_0(s_k)\varphi_0(s_l) = 0 \text{ for } k \neq l, \\ \varphi_1(\alpha_l) = \varphi_0(s_l)\varphi_1(\alpha_l)\varphi_0(s_{l+1}), \\ \varphi_1(\alpha_l^*) = \varphi_0(s_{l+1})\varphi_1(\alpha_l^*)\varphi_0(s_l). \end{cases}$$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

By the universal property of path algebra $\mathbb{C}\Gamma$, there exists a unique algebra homomorphism $\varphi:\mathbb{C}\Gamma\longrightarrow\overline{U}_q(sl_2^*,\kappa)$ such that

$$\varphi(s_l) = \varphi_0(s_l), \ \varphi(\alpha_l) = \varphi_1(\alpha_l), \ \text{and} \ \varphi(\alpha_l^*) = \varphi_1(\alpha_l^*).$$

On the other hand, since

$$K = \sum_{l \in \mathbb{Z}_d} q^{-2l} \epsilon_l, \quad E = E \sum_{l \in \mathbb{Z}_d} \epsilon_l, \quad F = F \sum_{l \in \mathbb{Z}_d} \epsilon_l,$$

then $\varphi: \mathbb{C}\Gamma \longrightarrow \overline{U}_q(sl_2^*, \kappa)$ is surjective.

Step 2. Prove that $\widetilde{\varphi} : \Pi_a^m(\Gamma, I_d) \cong \overline{U}_q(sl_2^*, \kappa)$ as algebras. Let \mathcal{I}_d be the ideal $\left\langle \sum_{i \in \mathbb{Z}_d} \left(\alpha_i^* \alpha_i - \alpha_{i-1} \alpha_{i-1}^* - a(q^{-2mi} - q^{2mi})s_i \right), \gamma_i^d, (\gamma_i^d)^* \middle| i \in \mathbb{Z}_d \right\rangle$ of $\mathbb{C}\Gamma$. Then $\Pi_a^m(\Gamma, I_d) = \mathbb{C}\Gamma/\mathcal{I}_d$. One can check that $\varphi(\mathcal{I}_d) = 0$, i.e., $\mathcal{I}_d \subseteq \operatorname{Ker}\varphi$. On the other hand, we have proved that

$$\dim \overline{U}_q(sl_2^*,\kappa) = \dim \Pi_a^m(\Gamma, I_d) = d^3.$$

Hence $\operatorname{Ker} \varphi = \mathcal{I}_d$. By fundamental homomorphism theorem of algebras, $\varphi : \mathbb{C}\Gamma \longrightarrow \overline{U}_q(sl_2^*, \kappa)$ can induce a unique algebra isomorphism $\widetilde{\varphi} : \prod_a^m(\Gamma, I_d) \rightarrow \overline{U}_q(sl_2^*, \kappa)$.

Step 2. Prove that $\widetilde{\varphi}: \Pi_a^m(\Gamma, I_d) \cong \overline{U}_q(sl_2^*, \kappa)$ as Hopf algebras. In the following we only need to prove that $\widetilde{\varphi}: \Pi_a^m(\Gamma, I_d) \to \overline{U}_q(sl_2^*, \kappa)$ satisfies

$$\left\{ \begin{array}{l} \Delta_{\overline{U}}\widetilde{\varphi}(x) = (\widetilde{\varphi}\otimes\widetilde{\varphi})\Delta_{\Pi}(x),\\ \varepsilon_{\Pi}(x) = \varepsilon_{\overline{U}}\widetilde{\varphi}(x),\\ \widetilde{\varphi}S_{\overline{U}}(x) = S_{\Pi}\widetilde{\varphi}(x) \end{array} \right.$$

for any $x \in \Gamma_0 \cup \Gamma_1 = \{s_l, \alpha_l, \alpha_l^* | l \in \mathbb{Z}_d\}.$

Remark

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● のへで

Let M be a finite dimensional simple $\overline{U}_q(sl_2^*)$ -module. Then $\dim(M) = 1$, and the module structure on $M = \mathbb{C}v_0$ can be given as follows:

$$Kv_0 = q^l v_0, \quad Ev_0 = Fv_0 = 0,$$
 (11)

where $l \in \{0, 1, \cdots, d-1\}$ when n is odd and $l \in \{0, 2, \cdots, 2(d-1)\}$ when n is even..

Proof.

Since $\overline{U}_q(sl_2^*)$ is basic, then each simple $\overline{U}_q(sl_2^*)$ -module is one-dimensional. Assume that $M = \mathbb{C}v_0$. It is clear that $Kv_0 = \lambda v_0$ and $Ev_0 = Fv_0 = 0$. Since $K^d = 1$, then $\lambda^d = 1$. Therefore, we conclude that $\lambda \in \{1, q, \cdots, q^{d-1}\}$ when n = d is odd and $\lambda \in \{1, q^2, \cdots, q^{2(d-1)}\}$ when n = 2d is even.

Let M be a finite dimensional simple $\overline{U}_q(sl_2^*)$ -module. Then $\dim(M) = 1$, and the module structure on $M = \mathbb{C}v_0$ can be given as follows:

$$Kv_0 = q^l v_0, \quad Ev_0 = Fv_0 = 0,$$
 (11)

where $l \in \{0, 1, \cdots, d-1\}$ when n is odd and $l \in \{0, 2, \cdots, 2(d-1)\}$ when n is even..

Proof.

Since $\overline{U}_q(sl_2^*)$ is basic, then each simple $\overline{U}_q(sl_2^*)$ -module is one-dimensional. Assume that $M = \mathbb{C}v_0$. It is clear that $Kv_0 = \lambda v_0$ and $Ev_0 = Fv_0 = 0$. Since $K^d = 1$, then $\lambda^d = 1$. Therefore, we conclude that $\lambda \in \{1, q, \cdots, q^{d-1}\}$ when n = d is odd and $\lambda \in \{1, q^2, \cdots, q^{2(d-1)}\}$ when n = 2d is even.

Let M be a finite dimensional representation of $\overline{U}_q(sl_2^*).$ (1) The linear space

$$M_{\lambda} = \{ v \in M | Kv = \lambda v \},\$$

i.e., the eigenspace of K acting on M for the eigenvalue $\lambda,$ is called a weight space of M.

(2) If M is the direct sum of its weight spaces, then we call M a weight representation of $\overline{U}_q(sl_2^*)$.

(3) Let M be a finite dimensional weight representation of $\overline{U}_q(sl_2^*),$ and denote by

$$\Lambda_M = \{\lambda_1, \lambda_2, \cdots, \lambda_m\}$$

the set of all the mutually different eigenvalues of K acting on M. We call Λ_M the weight set of M.

< 口 > < 同 > < 三 > < 三

(1) Let $\Lambda = \{\lambda_1, \lambda_2, \cdots, \lambda_m\}$ be a subset of \mathbb{C}^* . If there exists a $\lambda \in \Lambda$ such that

$$\Lambda = \left\{\lambda, q^2\lambda, \cdots, q^{2(m-1)}\lambda\right\},\,$$

then we call Λ a q^2 -chain.

(2) Let M be a finite dimensional weight representation of $U_q(sl_2^*)$. If its weight set $\Lambda_M = \{\lambda_1, \lambda_2, \cdots, \lambda_m\}$ is a q^2 -chain, we call M a q^2 -chain representation of $\overline{U}_q(sl_2^*)$. Let M be a finite dimensional representation of $\overline{U}_q(sl_2^*)$. The action of the generator K on M can be considered as a linear transformation $K: M \longrightarrow M$. Since $K^d = 1$, then M can always be decomposed as the direct sum of the eigenspaces of K, i.e.,

$$M = \bigoplus_{\lambda \in \Lambda_M} M_\lambda,$$

where Λ_M consisting of all the eigenvalues of K is contained in the following set

$$\Lambda_{q^2} = \left\{ 1, q^2, q^4, \cdots, q^{2(d-2)}, q^{2(d-1)} \right\}$$

whenever n is odd or even.

(1) Each finite dimensional representation M of $\overline{U}_q(sl_2^*)$ is a weight representation.

(2) Each finite dimensional indecomposable representation M of $\overline{U}_q(sl_2^*)$ is a q^2 -chain representation, where Λ_M is a q^2 -chain with $\Lambda_M \subseteq \Lambda_{q^2}$.

(3) Each finite dimensional representation of $\overline{U}_q(sl_2^*)$ can be decomposed as the direct sum of some indecomposable q^2 -chain representations of $\overline{U}_q(sl_2^*)$.

伺 ト イヨト イヨト

Recall that $\Pi^1_0(\Gamma, I_d) = \mathbb{C}\Gamma/\mathcal{I}_d$, where

$$\mathcal{I}_{d} = \left\langle \sum_{i \in \mathbb{Z}_{d}} \left(\alpha_{i}^{*} \alpha_{i} - \alpha_{i-1} \alpha_{i-1}^{*} \right), \gamma_{i}^{d}, (\gamma_{i}^{d})^{*} \middle| i \in \mathbb{Z}_{d} \right\rangle.$$

Denote by $\operatorname{rep}\Pi_0^1(\Gamma, I_d)$ the category of finite dimensional representations of $\Pi_0^1(\Gamma, I_d)$. Let \mathcal{R}_{Γ} be the arrow ideal of $\mathbb{C}\Gamma$. Then the ideal \mathcal{I}_d is an admissible ideal of $\mathbb{C}\Gamma$ because

$$0 = \mathcal{R}_{\Gamma}^d \subseteq \mathcal{I}_d \subseteq \mathcal{R}_{\Gamma}^2.$$

So we can always identify the finite dimensional representations of $\Pi_0^1(\Gamma, I_d)$ with those of the bound quiver (Γ, \mathcal{I}_d) .

3.2 Equivalences between the categories $\operatorname{rep}\overline{U}_q(sl_2^*)$ and $\operatorname{rep}\Pi_0^1(\Gamma, I_d)$

In other words, each finite dimensional representation $V = (V_i, E_i, F_i)_{i \in \mathbb{Z}_d}$ of $\Pi^1_0(\Gamma, I_d)$ can be given as follows

where the matrix $E_i, F_i (i \in \mathbb{Z}_d)$ satisfy

$$\begin{cases}
F_i E_i = E_{i-1} F_{i-1} \ (i \in \mathbb{Z}_d), \\
E_{i+d-1} \cdots E_{i+1} E_i = 0 \ (i \in \mathbb{Z}_d), \\
F_i F_{i+1} \cdots F_{i+d-1} = 0 \ (i \in \mathbb{Z}_d).
\end{cases}$$
(12)

For any two objects $V = (V_i, E_i^V, F_i^V)_{i \in \mathbb{Z}_d}$ and $W = (W_i, E_i^W, F_i^W)_{i \in \mathbb{Z}_d}$ in $\operatorname{rep}\Pi_0^1(\Gamma, I_d)$, one has

$$f = (f_i)_{i \in \mathbb{Z}_d} \in \operatorname{Hom}_{\Pi_0^1(\Gamma, I_d)}(V, W)$$

such that

$$E_{i}^{W}f_{i} = f_{i+1}E_{i}^{V}, \ F_{i}^{W}f_{i+1} = f_{i}F_{i}^{V} \text{ for } i \in \mathbb{Z}_{d}.$$

Define a functor $\overline{\Omega} : \mathbf{rep} \Pi_0^1(\Gamma, I_d) \longrightarrow \mathbf{rep} \overline{U}_q(sl_2^*)$ as follows:

$$\overline{\Omega} : \mathbf{rep} \Pi_0^1(\Gamma, I_d) \longrightarrow \mathbf{rep} \overline{U}_q(sl_2^*)$$

$$V = (V_i, E_i^V, F_i^V) \longmapsto \overline{\Omega}(V)$$

$$V \xrightarrow{f=(f_i)} W \longmapsto \overline{\Omega}(V) \xrightarrow{\overline{\Omega}(f)} \overline{\Omega}(W)$$

where as a vector space $\overline{\Omega}(V) = \bigoplus_{i \in \mathbb{Z}_d} V_i$ and the action of $\overline{U}_q(sl_2^*)$ on $\Omega(V)$ is given by

on $\Omega(V)$ is given by

$$\left\{ \begin{array}{l} Kv = q^{2i}v, \\ Ev = E_i^V(v), \\ Fv = F_{i-1}^V(v) \end{array} \right.$$

for any $v \in V_i$, while $\overline{\Omega}(f) = \bigoplus_{i \in \mathbb{Z}_d} f_i$.

3.2 Equivalences between the categories $\mathbf{rep}\overline{U}_q(sl_2^*)$ and $\mathbf{rep}\Pi_0^1(\Gamma, I_d)$

Define a functor $\overline{\Omega}^{-1}$: $\mathbf{rep}\overline{U}_q(sl_2^*) \longrightarrow \mathbf{rep}\Pi_0^1(\Gamma, I_d)$ as follows:

$$\begin{split} \overline{\Omega}^{-1} : \mathbf{rep} \overline{U}_q(sl_2^*) &\longrightarrow \mathbf{rep} \Pi_0^1(\Gamma, I_d) \\ M &\longmapsto \overline{\Omega}^{-1}(M) \\ M \xrightarrow{f} N &\longmapsto \overline{\Omega}^{-1}(M) \xrightarrow{\overline{\Omega}^{-1}(f)} \overline{\Omega}^{-1}(N), \end{split}$$

where $\overline{\Omega}^{-1}(M) := V = (V_i, E_i^V, F_i^V)_{i \in \mathbb{Z}_d}$ is given by

$$\left\{ \begin{array}{l} V_i = M_{q^{2i}}, \\ E_i^V = M_{q^{2i}} \xrightarrow{E} M_{q^{2(i+1)}}, \\ F_i^V = M_{q^{2(i+1)}} \xrightarrow{F} M_{q^{2i}} \end{array} \right. \label{eq:Vi}$$

for $i \in \mathbb{Z}_d$, while $\overline{\Omega}^{-1}(f) := (g_i)_{i \in \mathbb{Z}_d}$ with g_i the restriction of f on $M_{q^{2i}}$.

The functor $\overline{\Omega}$: $\mathbf{rep}\Pi_0^1(\Gamma, I_d) \longrightarrow \mathbf{rep}\overline{U}_q(sl_2^*)$ is an equivalence of categories.

The Hopf algebra isomorphism $\tilde{\varphi}: \Pi_0^1(\Gamma, I_d) \longrightarrow \overline{U}_q(sl_2^*)$ we obtained can naturally induce an equivalence of categories

$$\begin{array}{rcl} \Omega_{\widetilde{\varphi}} : \mathbf{rep} \Pi_0^1(\Gamma, I_d) & \longrightarrow & \mathbf{rep} \overline{U}_q(sl_2^*) \\ & M & \longmapsto & \Omega_{\widetilde{\varphi}}(M) = M \\ & M \xrightarrow{f} N & \longmapsto & \Omega_{\widetilde{\varphi}}(f) = M \xrightarrow{f} N, \end{array}$$

where $\Omega_{\widetilde{\varphi}}(M) = M$ is a representation of $\overline{U}_q(sl_2^*)$ with the action of $\overline{U}_q(sl_2^*)$ on M given by

$$\begin{array}{cccc} \cdot : \overline{U}_q(sl_2^*) \otimes M & \longrightarrow & M \\ & u \otimes m & \longmapsto & u \cdot m = \widetilde{\varphi}^{-1}(u)m. \end{array}$$

3.2 Equivalences between the categories ${f rep}\overline{U}_q(sl_2^*)$ and ${f rep}\Pi^1_0(\Gamma,I_d)$

On the other hand, there exists a natural equivalence of categories

$$\widetilde{\Omega} : \operatorname{\mathbf{rep}}(\Gamma, \mathcal{I}_d) \longrightarrow \operatorname{\mathbf{rep}}\Pi^1_0(\Gamma, I_d)$$

$$V = (V_i, E_i^V, F_i^V)_{i \in \mathbb{Z}_d} \longmapsto \widetilde{\Omega}(V) = \bigoplus_{i \in \mathbb{Z}_d} V_i$$

$$V \xrightarrow{f = (f_i)_{i \in \mathbb{Z}_d}} W \longmapsto \widetilde{\Omega}(V) \xrightarrow{\widetilde{\Omega}(f) = \bigoplus_{i \in \mathbb{Z}_d} f_i} \widetilde{\Omega}(W),$$

where for any $v = (v_i)_{i \in \mathbb{Z}_d} \in \widetilde{\Omega}(V)$ and any path $w \in \Gamma$, the action of $\Pi^1_0(\Gamma, I_d)$ on $\widetilde{\Omega}(V)$ can be given by

$$(wv)_k = \begin{cases} \delta_{ik}v_i, & \text{if } w = s_i, \\ \delta_{jk}\psi_{\beta_l}\cdots\psi_{\beta_2}\psi_{\beta_1}(v_i), & \text{if } w = \beta_l\cdots\beta_2\beta_1: i \to j. \end{cases}$$

with

$$\psi_{\beta_r} = \left\{ \begin{array}{ll} E_s^V, & \text{if } \beta_r = \alpha_s \text{ for some } s \in \mathbb{Z}_d, \\ F_s^V, & \text{if } \beta_r = \alpha_s^* \text{ for some } s \in \mathbb{Z}_d. \end{array} \right.$$

Corollary

As a functor, $\overline{\Omega}\widetilde{\Omega} = \Omega_{\widetilde{\varphi}}\widetilde{\Omega}$, i.e.,

伺 と く ヨ と く ヨ と

(1) Let $V = (V_i, E_i, F_i)_{i \in \mathbb{Z}_d}$ be a finite dimensional representation in the category $\operatorname{rep}(\Gamma, \mathcal{I}_d)$. If V is indecomposable and $V_i \neq 0$ for all $i \in \mathbb{Z}_d$, then we call V a primitive representation in $\operatorname{rep}(\Gamma, \mathcal{I}_d)$. (2) Let M be an indecomposable representation in the category $\operatorname{rep}\overline{U}_q(sl_2^*)$. If the weight set Λ_M of M can be given as follows

$$\Lambda_M = \{1, q^2, \cdots, q^{2i}, \cdots, q^{2l}\}$$

for some integer $l \in \mathbb{Z}_d$, then we call M a primitive representation of $\overline{U}_q(sl_2^*)$.

伺 ト く ヨ ト く ヨ ト

(1) Let $V = (V_i, E_i, F_i)_{i \in \mathbb{Z}_d}$ be a finite dimensional representation in the category $\operatorname{rep}(\Gamma, \mathcal{I}_d)$. If V is indecomposable and $V_i \neq 0$ for all $i \in \mathbb{Z}_d$, then we call V a primitive representation in $\operatorname{rep}(\Gamma, \mathcal{I}_d)$. (2) Let M be an indecomposable representation in the category $\operatorname{rep}\overline{U}_q(sl_2^*)$. If the weight set Λ_M of M can be given as follows

$$\Lambda_M = \{1, q^2, \cdots, q^{2i}, \cdots, q^{2l}\}\$$

for some integer $l \in \mathbb{Z}_d$, then we call M a primitive representation of $\overline{U}_q(sl_2^*)$.

Assume that M is a primitive representation of $\overline{U}_q(sl_2^*)$ with weight set

$$\Lambda_M = \{1, q^2, \cdots, q^{2i}, \cdots, q^{2l}\}$$

for some $l \in \mathbb{Z}_d$. Then $M = \bigoplus_{i=0}^l M_{q^{2i}}$. For each $0 \le i \le l$, assume that $v_{i1}, v_{i2}, \cdots, v_{in_i}$ is a basis of $M_{q^{2i}}$, we obtain a basis

$$B_M = (v_{01}, v_{02}, \cdots, v_{0n_0}, \cdots, v_{i1}, v_{i2}, \cdots, v_{in_i}, \cdots, v_{l1}, v_{l2}, \cdots, v_{ln_l})$$

of M. Considered as linear transformations on M, the generators K, E, F of $\overline{U}_q(sl_2^*)$ acting on the basis B_M are respectively corresponding to the following three matrix $\mathcal{K}, \mathcal{E}, \mathcal{F}$, i.e.,

(4月) (日) (日) 日

3.3 Primitive representations in the categories $\mathbf{rep}(\Gamma, \mathcal{I}_d)$ and $\mathbf{rep}\overline{U}_q(sl_2^*)$

$$\begin{split} \mathcal{K} &= \begin{pmatrix} I_{n_0} & & & \\ & q^2 I_{n_1} & & \\ & & \ddots & \\ & & q^{2l} I_{n_l} \end{pmatrix}, \\ \mathcal{E} &= \begin{pmatrix} 0 & \delta_{l,d-1} \mathcal{E}_l \\ \mathcal{E}_0 & 0 & & \\ & \ddots & \\ & \mathcal{E}_{l-1} & 0 \end{pmatrix}, \\ \mathcal{F} &= \begin{pmatrix} 0 & \mathcal{F}_0 & & \\ & 0 & & \\ & & \ddots & \mathcal{F}_{l-1} \\ \delta_{l,d-1} \mathcal{F}_l & & 0 \end{pmatrix}, \end{split}$$

Jialei Chen Preprojective algebras and the restricted quantum group $\overline{U}_q(sl_2^*)$

伺 ト く ヨ ト く ヨ ト

where I_{n_i} is the $n_i \times n_i$ identity matrix, \mathcal{E}_i is a $n_{i+1} \times n_i$ matrix, \mathcal{F}_i is a $n_i \times n_{i+1}$ matrix, and $\mathcal{E}_i, \mathcal{F}_i$ $(0 \le i \le l)$ satisfy

$$\begin{cases} \delta_{l,d-1}\mathcal{E}_{l}\mathcal{F}_{l} = \mathcal{F}_{0}\mathcal{E}_{0},\\ \mathcal{E}_{i}\mathcal{F}_{i} = \mathcal{F}_{i+1}\mathcal{E}_{i+1} \ (0 \leq i \leq l-2),\\ \mathcal{E}_{l-1}\mathcal{F}_{l-1} = \delta_{l,d-1}\mathcal{F}_{l}\mathcal{E}_{l},\\ \mathcal{E}_{i}\mathcal{E}_{i-1}\cdots\mathcal{E}_{1}\mathcal{E}_{0}\mathcal{E}_{d-1}\cdots\mathcal{E}_{i+1} = 0 \ (0 \leq i \leq d-1),\\ \mathcal{F}_{i}\mathcal{F}_{i+1}\cdots\mathcal{F}_{d-1}\mathcal{F}_{0}\mathcal{F}_{1}\cdots\mathcal{F}_{i-1} = 0 \ (0 \leq i \leq d-1). \end{cases}$$

$$(13)$$

🗇 🕨 🖉 🕨 🖉 💌 🖻

Assume that M is a d-dimensional primitive representation of $\overline{U}_q(sl_2^*)$ with $\Lambda_M = \{q^{2i} | i \in \mathbb{Z}_d\}$. Then M is isomorphic to a d-dimensional primitive representation $\overline{L}_{\mathcal{E},\mathcal{F}}$ defined by

$$\begin{cases} KB_M = B_M \mathcal{K}, \\ EB_M = B_M \mathcal{E}, \\ FB_M = B_M \mathcal{F}, \end{cases}$$

where

$$\begin{cases} \mathcal{E}_i \mathcal{F}_i = 0 \ (i \in \mathbb{Z}_d), \\ \mathcal{E}_i + \mathcal{F}_i = 1 \ (i \in \mathbb{Z}_d), \end{cases} \text{ or } \begin{cases} \mathcal{E}_i \mathcal{F}_i = 0 \ (i \in \mathbb{Z}_d), \\ \exists | i_0 \in \mathbb{Z}_d \text{ s.t. } \mathcal{E}_{i_0} = \mathcal{F}_{i_0} = 0, \\ \mathcal{E}_i + \mathcal{F}_i = 1 \ (i \in \mathbb{Z}_d \setminus \{i_0\}). \end{cases}$$

Thank you!

Jialei Chen Preprojective algebras and the restricted quantum group $\overline{U}_q(sl_2^*$

< E

< ∃⇒

э