Root multiplicities for Nichols algebras of diagonal type of rank two

Ying Zheng

Yangzhou University joint with I.Heckenberger

2021.8.24

Braided vector space and Nichols algebras

Multiplicities of root $m\alpha_1 + 2\alpha_2$ Notion of root multiplicity The root multiplicities

 Nichols algebra was originally introduced in the late 1970 by W.Nichols in the paper, in which the author attempted to classify certain finite- dimensional Hopf algebra[Comm. Algebra,78].

- Nichols algebra was originally introduced in the late 1970 by W.Nichols in the paper, in which the author attempted to classify certain finite- dimensional Hopf algebra[Comm. Algebra,78].
- In 1998, N. Andruskiewitsch and H.-J. Schneider raised lifting method to classify Hopf algebra[J.Algebra, 98]

- Nichols algebra was originally introduced in the late 1970 by W.Nichols in the paper, in which the author attempted to classify certain finite- dimensional Hopf algebra[Comm. Algebra,78].
- In 1998, N. Andruskiewitsch and H.-J. Schneider raised lifting method to classify Hopf algebra[J.Algebra, 98]
- It turned out that Nichols algebras played as a fundamental object in the lifting method to classify finite dimensional pointed Hopf algebras [J.Algebra, 98].

- Nichols algebra was originally introduced in the late 1970 by W.Nichols in the paper, in which the author attempted to classify certain finite- dimensional Hopf algebra[Comm. Algebra,78].
- In 1998, N. Andruskiewitsch and H.-J. Schneider raised lifting method to classify Hopf algebra[J.Algebra, 98]
- It turned out that Nichols algebras played as a fundamental object in the lifting method to classify finite dimensional pointed Hopf algebras [J.Algebra, 98].
- I. Heckenberger introduced the root system and Weyl groupoid of Nichols algebra of diagonal type[Invent.Math. 2006]. And using the tools of root system and Weyl groupoid he classified the finite-dimensional Nichols algebras of diagonal type over fields of characteristic zero[Compositio.Math. 2007][Algebr.Represent. Theor. 2008],[Rev.Mat.Iberoamericana,Madrid,2007][Adv.Math, 2009].

Jing Wang and I. Heckenberger classified the Nichols algebra of diagonal type of rank 2,3 over field of positive characteristic[SIGMA Symmetry Integrability Geom.Methods Appl.2015],[Israel J. Math, 2017]. And Jing Wang classified the case of rank 4 over over field of positive characteristic[J.Algebra. 2021]

- Jing Wang and I. Heckenberger classified the Nichols algebra of diagonal type of rank 2,3 over field of positive characteristic[SIGMA Symmetry Integrability Geom.Methods Appl.2015],[Israel J. Math, 2017]. And Jing Wang classified the case of rank 4 over over field of positive characteristic[J.Algebra. 2021]
- Naihong Hu ,M.Rosso and Honglian Zhang gave the structures of two-parameter quantum affine algebra, vertex reprensentation, and quantum affine Lyndon basis[Commun. Math. Phys,08. N.Hu,M.Rosso,H.Zhang],[J. Algebra,16.N.Hu,H.Zhang].

- Jing Wang and I. Heckenberger classified the Nichols algebra of diagonal type of rank 2,3 over field of positive characteristic[SIGMA Symmetry Integrability Geom.Methods Appl.2015],[Israel J. Math, 2017]. And Jing Wang classified the case of rank 4 over over field of positive characteristic[J.Algebra. 2021]
- Naihong Hu ,M.Rosso and Honglian Zhang gave the structures of two-parameter quantum affine algebra, vertex reprensentation, and quantum affine Lyndon basis[Commun. Math. Phys,08. N.Hu,M.Rosso,H.Zhang],[J. Algebra,16.N.Hu,H.Zhang].
- I. Damiani gave the structures of root vectors of some one-parameter quantum affine [J. Algebra,93], [Publ. Res. Inst. Math. Sci.,12].

Question

What are the roots and their multiplicities of a given Nichols algebra of diagonal type?

Question

What are the roots and their multiplicities of a given Nichols algebra of diagonal type?

▶ Roots of form $m\alpha_1 + k\alpha_2, k = \{0, 1\}, m \in \mathbb{N}$ were determined in [M.Rosso,Invent.math.98].

Question

What are the roots and their multiplicities of a given Nichols algebra of diagonal type?

- ▶ Roots of form $m\alpha_1 + k\alpha_2, k = \{0, 1\}, m \in \mathbb{N}$ were determined in [M.Rosso,Invent.math.98].
- Roots for finite-dimensional Nichols algebras is determined in [I.Heckenberger,Algebra Represent.Theory 08] and [M.Cuntz, I.Heckenberger,J.Pure Appl.Algebra,09]: The roots are real roots with respect to the action of the Weyl groupoid, and their multiplicities are one.

Let \Bbbk be a field and $\Bbbk^\times = \Bbbk/\{0\}$

Definition

We call a pair (V, c) a braided vector space, if V is a vector space and $c : V \otimes V \rightarrow V \otimes V$ is an linear isomorphism of $V \otimes V$, and c satisfies the braid equation:

 $(c \otimes \mathrm{id})(\mathrm{id} \otimes c)(c \otimes \mathrm{id}) = (\mathrm{id} \otimes c)(c \otimes \mathrm{id})(\mathrm{id} \otimes c)$

Braided vector space of diagonal type

Definition

Let V be a vector space and let $c : V \otimes_{\Bbbk} V \to V \otimes_{\Bbbk} V$ be a linear isomorphism. The pair (V, c) is called a **braided vector space of diagonal type** if there exists a basis x_1, x_2, \ldots, x_n of V, such that

$$c(x_i \otimes x_j) = q_{ij}x_j \otimes x_i$$
, for any $1 \le i \le j \le n$

for some $q_{ij} \in \Bbbk^{ imes}$. $oldsymbol{q} = (q_{ij})_{1 \leq i,j \leq n}$ is called the braiding matrix of V.

Let V be a vector space and let $c : V \otimes_{\Bbbk} V \to V \otimes_{\Bbbk} V$ be a linear isomorphism. The pair (V, c) is called a **braided vector space of diagonal type** if there exists a basis x_1, x_2, \ldots, x_n of V, such that

$$c(x_i \otimes x_j) = q_{ij}x_j \otimes x_i$$
, for any $1 \le i \le j \le n$

for some $q_{ij} \in \Bbbk^{\times}$. $\boldsymbol{q} = (q_{ij})_{1 \leq i,j \leq n}$ is called the braiding matrix of V.

▶ \mathbb{B}_m : the braid group generated by m-1 standards $\sigma_1, \sigma_2, \ldots, \sigma_{m-1}$ and relations

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$$
, for any $1 \le i \le m-2$,
 $\sigma_i \sigma_j = \sigma_j \sigma_i$, for $1 \le i+1 < j \le m-1$.

Let V be a vector space and let $c : V \otimes_{\Bbbk} V \to V \otimes_{\Bbbk} V$ be a linear isomorphism. The pair (V, c) is called a **braided vector space of diagonal type** if there exists a basis x_1, x_2, \ldots, x_n of V, such that

$$c(x_i \otimes x_j) = q_{ij}x_j \otimes x_i$$
, for any $1 \le i \le j \le n$

for some $q_{ij} \in \mathbb{k}^{\times}$. $\boldsymbol{q} = (q_{ij})_{1 \leq i,j \leq n}$ is called the braiding matrix of V.

▶ \mathbb{B}_m : the braid group generated by m-1 standards $\sigma_1, \sigma_2, \ldots, \sigma_{m-1}$ and relations

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$$
, for any $1 \le i \le m-2$,
 $\sigma_i \sigma_i = \sigma_i \sigma_i$, for $1 \le i+1 < j \le m-1$.

► For $m \ge 2$, let $\rho_m : \Bbbk \mathbb{B}_m \to \operatorname{End}(V^{\otimes m})$ be the representation of $\Bbbk \mathbb{B}_m$ given by $c_i = \rho_m(\sigma_i) = \operatorname{id}_{V^{\otimes i-1}} \otimes c \otimes \operatorname{id}_{V^{\otimes m-i-1}}$.

Braid group and braided symmetrizer

For any $m \ge 2$, let

$$S_m = \sum_{\sigma \in \mathbb{S}_m} s(\sigma)$$

where \mathbb{S}_m is the symmetric group and $s:\mathbb{S}_m\to\mathbb{B}_m$ is the section map.

The map $\rho_m(S_m)$ is called the **braided symmetrizer**.

Braid group and braided symmetrizer

For any $m \ge 2$, let

$$S_m = \sum_{\sigma \in \mathbb{S}_m} s(\sigma)$$

where \mathbb{S}_m is the symmetric group and $s : \mathbb{S}_m \to \mathbb{B}_m$ is the section map. The map $\rho_m(S_m)$ is called the **braided symmetrizer**.

Definition (P. Schauenburg, Comm. Algebra, 1996) Let (V, c) be a braided vector space. The quotient

$$\mathcal{B}(V) = \mathbb{k} + V + \bigoplus_{k \geq 2} V^{\otimes k} / \ker(\rho_k(S_k))$$

is called the **Nichols algebra** of V. We say $\mathcal{B}(V)$ if of diagonal type if V is of diagonal type.

Root vector

- Let (V, c) be a braided vector space of diagonal type.
- Let $X = \{x_1, x_2, ..., x_n\}$ be a basis of V.
- \mathbb{X}^{\times} : the set of non-empty words with letters in X.

Definition

For a Lyndon word $w \in \mathbb{X}^{\times}$, define the **super-word** $[w] \in \mathcal{T}(V)$ inductively given by:

- 1. [w] = w, if $w \in X$, and
- 2. $[w] = [u][v] \chi(\deg(u), \deg(v))[v][u]$, and w = uv is the Shirshow decomposition of w.

Root vector

- Let (V, c) be a braided vector space of diagonal type.
- Let $X = \{x_1, x_2, ..., x_n\}$ be a basis of V.
- \mathbb{X}^{\times} : the set of non-empty words with letters in X.

Definition

For a Lyndon word $w \in \mathbb{X}^{\times}$, define the **super-word** $[w] \in \mathcal{T}(V)$ inductively given by:

- 1. [w] = w, if $w \in X$, and
- 2. $[w] = [u][v] \chi(\deg(u), \deg(v))[v][u]$, and w = uv is the Shirshow decomposition of w.

Definition

Let $w = v^k$ and v be a Lyndon word. Then [w] is a **root vector** (of $\mathcal{B}(V)$) if $[w] \in \mathcal{B}(V)$ not a linear combination of elements of the form $[v_k]^{m_k}[v_{k-1}]^{m_{k-1}}\cdots [v_1]^{m_1}$, and $[v_1],\ldots,[v_k]$ are super-letters with $w < v_1 < \cdots < v_k$.

Root system

Theorem (V. K. Kharchenko, Algebra Log., 1999)

There exists a subset $L\subseteq \mathbb{X}^{\times}$ of Lyndon words, such that the elements

$$egin{aligned} & [v_k]^{m_k}\cdots [v_1]^{m_1}, & k\in \mathbb{N}_0, \ v_1,\ldots,v_k\in L, \ v_1\leq v_2\leq \cdots \leq v_k, \ & 0< m_i < h(v_i) \ ext{for any } i \ ext{with } h(v_i)
eq 1, \end{aligned}$$

form a vector space basis of $\mathcal{B}(V)$.

Theorem (V. K. Kharchenko, Algebra Log., 1999)

There exists a subset $L\subseteq \mathbb{X}^{\times}$ of Lyndon words, such that the elements

$$egin{aligned} & [v_k]^{m_k}\cdots [v_1]^{m_1}, & k\in \mathbb{N}_0, \ v_1,\ldots,v_k\in L, \ v_1\leq v_2\leq \cdots \leq v_k, \ & 0< m_i < h(v_i) \ ext{for any } i \ ext{with } h(v_i)
eq 1, \end{aligned}$$

form a vector space basis of $\mathcal{B}(V)$.

Definition

Let $\Delta_+ = \{ deg(u) \mid u \in L \}$ be the **positive roots** of $\mathcal{B}(V)$. And the root system of $\mathcal{B}(V)$ is $\Delta = \Delta_+ \cup -\Delta_+$.

Definition (Multiplicity)

For any $\alpha \in \Delta_+$, the number of elements $u \in L$ with deg $(u) = \alpha$ is called the **multiplicity** of α .

Ying Zheng | Root multiplicities for Nichols algebras of diagonal type

- Let (V, c) be a braided vector space of diagonal type of rank 2.
- $(q_{ij})_{1 \le i,j \le 2}$ be the braiding matrix of V.

- Let (V, c) be a braided vector space of diagonal type of rank 2.
- $(q_{ij})_{1 \le i,j \le 2}$ be the braiding matrix of V.
- ▶ $r = q_{12}q_{21}, q = q_{11}, s = q_{22}$

- Let (V, c) be a braided vector space of diagonal type of rank 2.
- $(q_{ij})_{1 \le i,j \le 2}$ be the braiding matrix of V.

▶
$$r = q_{12}q_{21}, q = q_{11}, s = q_{22}$$

• For all $k \in \mathbb{N}_0$, let $b_k = \prod_{j=0}^{k-1} (1 - q^j r)$;

- Let (V, c) be a braided vector space of diagonal type of rank 2.
- $(q_{ij})_{1 \le i,j \le 2}$ be the braiding matrix of V.

▶
$$r = q_{12}q_{21}, q = q_{11}, s = q_{22}$$

- For all $k \in \mathbb{N}_0$, let $b_k = \prod_{j=0}^{k-1} (1-q^j r)$;
- ► ad x_1 : the adjoint action of T(V) such that for any $v \in T(V)$ ad $x_1(v) = x_1v - \chi(\alpha_1, \deg(v))vx_1$.

- Let (V, c) be a braided vector space of diagonal type of rank 2.
- $(q_{ij})_{1 \le i,j \le 2}$ be the braiding matrix of V.

$$r = q_{12}q_{21}, q = q_{11}, s = q_{22}$$

- For all $k \in \mathbb{N}_0$, let $b_k = \prod_{j=0}^{k-1} (1-q^j r)$;
- ad x₁: the adjoint action of T(V) such that for any v ∈ T(V) ad x₁(v) = x₁v − χ(α₁, deg(v))vx₁.
- For any $k \in \mathbb{N}_0$, let $u_k = (\operatorname{ad} x_1)^k(x_2) \in T(V)$.

- Let (V, c) be a braided vector space of diagonal type of rank 2.
- $(q_{ij})_{1 \le i,j \le 2}$ be the braiding matrix of V.

$$r = q_{12}q_{21}, q = q_{11}, s = q_{22}$$

- For all $k \in \mathbb{N}_0$, let $b_k = \prod_{j=0}^{k-1} (1-q^j r)$;
- ► ad x_1 : the adjoint action of T(V) such that for any $v \in T(V)$ ad $x_1(v) = x_1v - \chi(\alpha_1, \deg(v))vx_1$.
- For any $k \in \mathbb{N}_0$, let $u_k = (\operatorname{ad} x_1)^k (x_2) \in T(V)$.

Lemma(M.Rosso, Inven.math.98, Lemma 14)

Let $k \in \mathbb{N}$, then $u_k = 0$ in $\mathcal{B}(V)$, if and only if $(k)_q^! b_k = 0$.

• Write
$$\hat{u}_k = (k)_q^{!-1} b_k^{-1} u_k$$
, if $(k)_q^! b_k \neq 0$.

For all $k \in \mathbb{N}_0$ with $(k)_q^! b_k \neq 0$, let

$$P_{k} = \sum_{i=0}^{k} (-q_{21})^{i} q^{i(i-1)/2} \hat{u}_{i} \hat{u}_{k-i} \in T(V).$$

• Write
$$\hat{u}_k = (k)_q^{!-1} b_k^{-1} u_k$$
, if $(k)_q^! b_k \neq 0$.

For all $k \in \mathbb{N}_0$ with $(k)_q^! b_k \neq 0$, let

$$P_{k} = \sum_{i=0}^{k} (-q_{21})^{i} q^{i(i-1)/2} \hat{u}_{i} \hat{u}_{k-i} \in T(V).$$

Lemma

Let
$$k \in \mathbb{N}_0$$
 with $(k)_q^! b_k \neq 0$. Then $P_k = 0$ in $\mathcal{B}(V)$ iff $1 + (-r)^k sq^{k(k-1)/2} = 0.$

Let $\mathbb{J} = \mathbb{J}_{q,r,s} \subseteq \mathbb{N}_0$ be such that $j \in \mathbb{J}$ if and only if

$$q^{j(j-1)/2}(-r)^j s + 1 = 0$$

and for any $n \in \mathbb{J}$ with n < j such that

$$\begin{cases} (\frac{j-n}{2})_{q^{n+j-1}r^2} = 0, \text{ if } j-n \text{ is even}, \\ (j-n)_{-q^{(n+j-1)/2}r} = 0, \text{ if } j-n \text{ is odd}. \end{cases}$$

The set \mathbb{J}

Lemma

- 1. Let $\mathbb{J}_1 \subseteq \mathbb{J}$ such that $j \in \mathbb{J}_1$ iff $q^{j(j-1)/2}(-r)^j s = -1$ and $q^{n+j-1}r^2 \neq 1$, for any $n \in \mathbb{J}$ with n < j;
- 2. Let $\mathbb{J}_2 \subseteq \mathbb{J}$ such that $j \in \mathbb{J}_2$ iff there exists $n \in \mathbb{J}_1$ with n < j, such that

$$\begin{cases} q^{n+j-1}r^2 = 1 \text{ and } 2p|(j-n), & \text{if } j-n \text{ is even} \\ q^{(n+j-1)/2}r = -1 \text{ and } p|(j-n), & \text{if } j-n \text{ is odd.} \end{cases}$$

Then $\mathbb{J} = \mathbb{J}_1 \cup \mathbb{J}_2$.

Note that if $char(\Bbbk) = 0$, then $\mathbb{J} = \mathbb{J}_1$

The case for $char(\Bbbk) = 0$

For any
$$m \in \mathbb{N}_0$$
, $U_m = \bigoplus_{i=0}^m \Bbbk u_i u_{m-i} \subseteq T(V)$

Theorem

Assume that $\operatorname{char}(\Bbbk) = 0$. Let $m \in \mathbb{N}_0$ such that $(m)_q^l b_m \neq 0$. Then the elements $(\operatorname{ad} x_1)^{m-j}(P_j), j \in \mathbb{J}_1 \cap [0, m]$ form a basis of $\ker(S_{m+2}) \cap U_m$.

The case for $char(\Bbbk) \neq 0$

$$U'_n = \bigoplus_{i=0}^{n-1} \Bbbk u_i u_{n-i} \subseteq T(V).$$

Lemma

Assume char(\mathbb{k}) $\neq 0$. Let $n \in \mathbb{N}_0$ such that that $(n)_q^! b_n \neq 0$. Suppose that $n \in \mathbb{J}_2$, and that $j_n \in \mathbb{J}_1$ with $j_n < n$ such that $q^{n+j_n-1}r^2 = 1$. Then there exits a unique element $L_n \in U'_n \cap \ker(S_{n+2})$ such that

$$-q_{21}^{-1}d_1(L_n) = (\operatorname{ad} x_1)^{n-j_n-1}(P_{j_n}).$$

Theorem

Suppose that $m \in \mathbb{N}_0$ and that $(m)_a^! b_m \neq 0$. The elements

 $(ad x_1)^{m-j}(P_j), j \in J_1 \cap [0, m], and$

 $(\operatorname{ad} x_1)^{m-n}(L_n), n \in \mathbb{J}_2 \cap [0, m],$

form a basis of ker $(S_{m+2}) \cap U_m$.

Multiplicities of $m\alpha_1 + 2\alpha_2$

Corollary

Let $m \in \mathbb{N}_0$ such that $(m)_q^! b_m \neq 0$. Then the multiplicity of $m\alpha_1 + 2\alpha_2$ is

$$m' - \big| \mathbb{J} \cap [0, m] \big|,$$

$$m' = \begin{cases} (m+1)/2 & \text{if } m \text{ is odd,} \\ m/2 & \text{if } m \text{ is even and } q^{m^2/4}(r)^{m/2}q \neq -1, \\ m/2+1 & \text{if } m \text{ is even and } q^{m^2/4}(r)^{m/2}q = -1. \end{cases}$$

Multiplicities of $m\alpha_1 + 2\alpha_2$

Corollary

Let $m \in \mathbb{N}_0$ such that $(m)_q^! b_m \neq 0$. Then the multiplicity of $m\alpha_1 + 2\alpha_2$ is

$$m' - \big| \mathbb{J} \cap [0, m] \big|,$$

$$m' = \begin{cases} (m+1)/2 & \text{if } m \text{ is odd,} \\ m/2 & \text{if } m \text{ is even and } q^{m^2/4}(r)^{m/2}q \neq -1, \\ m/2+1 & \text{if } m \text{ is even and } q^{m^2/4}(r)^{m/2}q = -1. \end{cases}$$

Proposition

Assume that $k, m \in \mathbb{N}_0$ with $m \ge k$ such that $(k)_q^l b_k \ne 0$, and $(k+1)_q(1-q^k r) = 0$. Then the multiplicity of $m\alpha_1 + 2\alpha_2$ is the same as the multiplicity of $(2k-m)\alpha_1 + 2\alpha_2$ of $\mathcal{B}(R_1(V))$.

Corollary

Let $m \in \mathbb{N}_0$.

- 1. Assume that $m = 2k + 1 \ge 5$ is odd and that $(k + 3)_q^! b_{k+3} \ne 0$. Then $m\alpha_1 + 2\alpha_2$ is a root of $\mathcal{B}(V)$.
- 2. Assume that $m = 2k \ge 8$ and that $(k + 4)_q^! b_{k+4} \ne 0$. Then $m\alpha_1 + 2\alpha_2$ is a root of $\mathcal{B}(V)$.
- 3. Assume that $m \in \{1, 2, 3, 4, 6\}$ and that $(m)_q^l b_m \neq 0$. Then $m\alpha_1 + 2\alpha_2$ is not a root if and only if q, r, s satisfy the conditions given in the following table.

$m\alpha_1 + 2\alpha_2$	non-root conditions
$\alpha_1 + 2\alpha_2$	(1+s)(1-rs)=0
$2\alpha_1 + 2\alpha_2$	$(1+s)(1-rs)(1+qr^2s)=0$
$3\alpha_1 + 2\alpha_2$	$s = -1, (3)_{-qr} = 0$
$4\alpha_1 + 2\alpha_2$	$s = -1, (3)_{-qr} = 0$ or
	$s = -1, q^3 r^2 = -1$ or
	$rs = 1, (3)_{-q^2r} = 0$
$6\alpha_1 + 2\alpha_2$	$q = 1, s = -1, (3)_{-r} = 0$

Example

Assume that $r = q^{-2}, \ s = q, \ q^2 \neq 1$, then the cartan matrix is $\begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$. Apply the results above, we get, The multiplicity for $\alpha_1 + \alpha_2$ is 1; The multiplicity for $2\alpha_2$ is 0 The multiplicity for $\alpha_1 + 2\alpha_2$ is 1; The multiplicity for $2\alpha_1 + 2\alpha_2 = \begin{cases} 1, q^2 \neq -1 \\ 0, q^2 = -1 \end{cases}$ (note in \hat{sl}_2 is 1) The multiplicity for $3\alpha_1 + 2\alpha_2$ is 1; The multiplicity for $m\alpha_1 + 2\alpha_2$, m > 4, is 0.

Thank you for attension!