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Motivation

» Nichols algebra was originally introduced in the late 1970 by
W.Nichols in the paper, in which the author attempted to classify
certain finite- dimensional Hopf algebra[Comm. Algebra,78].
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W.Nichols in the paper, in which the author attempted to classify
certain finite- dimensional Hopf algebra[Comm. Algebra,78].

» In 1998, N. Andruskiewitsch and H.-J. Schneider raised lifting
method to classify Hopf algebra[J.Algebra, 98]

» |t turned out that Nichols algebras played as a fundamental object in
the lifting method to classify finite dimensional pointed Hopf
algebras [J.Algebra, 98].
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Motivation

» Nichols algebra was originally introduced in the late 1970 by
W.Nichols in the paper, in which the author attempted to classify
certain finite- dimensional Hopf algebra[Comm. Algebra,78].

» In 1998, N. Andruskiewitsch and H.-J. Schneider raised lifting
method to classify Hopf algebra[J.Algebra, 98]

» |t turned out that Nichols algebras played as a fundamental object in
the lifting method to classify finite dimensional pointed Hopf
algebras [J.Algebra, 98].

» |. Heckenberger introduced the root system and Weyl groupoid of
Nichols algebra of diagonal type[lnvent.Math. 2006]. And using the
tools of root system and Weyl groupoid he classified the
finite-dimensional Nichols algebras of diagonal type over fields of
characteristic zero[Compositio.Math. 2007][Algebr.Represent.
Theor. 2008],[Rev.Mat.lberoamericana,Madrid,2007]|[Adv.Math,
2009].
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Motivation

» Jing Wang and |. Heckenberger classified the Nichols algebra of
diagonal type of rank 2,3 over field of positive characteristic[SIGMA
Symmetry Integrability Geom.Methods Appl.2015],[Israel J. Math,
2017]. And Jing Wang classified the case of rank 4 over over field of
positive characteristic[J.Algebra. 2021]
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» Jing Wang and |. Heckenberger classified the Nichols algebra of
diagonal type of rank 2,3 over field of positive characteristic[SIGMA
Symmetry Integrability Geom.Methods Appl.2015],[Israel J. Math,
2017]. And Jing Wang classified the case of rank 4 over over field of
positive characteristic[J.Algebra. 2021]

» Naihong Hu ,M.Rosso and Honglian Zhang gave the structures of
two-parameter quantum affine algebra, vertex reprensentation, and
quantum affine Lyndon basisfCommun. Math. Phys,08.
N.Hu,M.Rosso,H.Zhang],[J. Algebra,16.N.Hu,H.Zhang].
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Motivation

» Jing Wang and |. Heckenberger classified the Nichols algebra of
diagonal type of rank 2,3 over field of positive characteristic[SIGMA
Symmetry Integrability Geom.Methods Appl.2015],[Israel J. Math,
2017]. And Jing Wang classified the case of rank 4 over over field of
positive characteristic[J.Algebra. 2021]

» Naihong Hu ,M.Rosso and Honglian Zhang gave the structures of
two-parameter quantum affine algebra, vertex reprensentation, and
quantum affine Lyndon basisfCommun. Math. Phys,08.
N.Hu,M.Rosso,H.Zhang],[J. Algebra,16.N.Hu,H.Zhang].

» |. Damiani gave the structures of root vectors of some one-parameter
quantum affine [J. Algebra,93],[Publ. Res. Inst. Math. Sci.,12].

Ying Zheng | Root multiplicities for Nichols algebras of diagonal type



Question

What are the roots and their multiplicities of a given Nichols algebra of
diagonal type?
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Question

What are the roots and their multiplicities of a given Nichols algebra of
diagonal type?

» Roots of form may + kao, k = {0,1}, m € N were determined in
[M.Rosso,Invent.math.98].
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Question

What are the roots and their multiplicities of a given Nichols algebra of
diagonal type?

» Roots of form may + kao, k = {0,1}, m € N were determined in
[M.Rosso,Invent.math.98].

» Roots for finite-dimensional Nichols algebras is determined in
[I.Heckenberger,Algebra Represent. Theory 08] and [M.Cuntz,
I.Heckenberger,J.Pure Appl.Algebra,09]: The roots are real roots
with respect to the action of the Weyl groupoid, and their
multiplicities are one.
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Braided vector space

Let k be a field and k* = k/{0}

Definition

We call a pair (V, ¢) a braided vector space, if V is a vector space and
c:V®V = V®Visan linear isomorphism of V ® V, and c satisfies
the braid equation:

(c®id)(id® c)(c @ id) = (id ® c)(c @ id)(id ® c)
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Braided vector space of diagonal type

Definition

Let V be a vector space and let ¢ : V ®, V — V ® V be a linear
isomorphism. The pair (V, ¢) is called a braided vector space of
diagonal type if there exists a basis x1, x, ..., x, of V, such that

c(x ®xj) = qijx; ® x;, forany 1 < i <j<n
for some gjj € k*. g = (gjj)1<ij<n is called the braiding matrix of V.
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Braided vector space of diagonal type

Definition

Let V be a vector space and let ¢ : V ®, V — V ® V be a linear
isomorphism. The pair (V, ¢) is called a braided vector space of
diagonal type if there exists a basis x1, x, ..., x, of V, such that

c(x ®xj) = qijx; ® x;, forany 1 < i <j<n
for some gjj € k*. g = (gjj)1<ij<n is called the braiding matrix of V.

» B,,: the braid group generated by m — 1 standards 01,05,...,0m,_1
and relations

0i0j110; = 0j410i0i41, forany 1 <i<m—2,
oioj =0ojoj, for 1 <i+1<j<m-1.
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Braided vector space of diagonal type

Definition

Let V be a vector space and let ¢ : V ®, V — V ® V be a linear
isomorphism. The pair (V, ¢) is called a braided vector space of
diagonal type if there exists a basis x1, x, ..., x, of V, such that

c(x ®xj) = qijx; ® x;, forany 1 < i <j<n
for some gjj € k*. g = (gjj)1<ij<n is called the braiding matrix of V.

» B,,: the braid group generated by m — 1 standards 01,05,...,0m,_1
and relations
0i0j110; = 0j410i0i41, forany 1 <i<m—2,
oioj =0ojoj, for 1 <i+1<j<m-1.
» For m > 2, let p, : kB, — End(V®™) be the representation of kB,
given by ¢; = pm(O',') =idygi-1 ® ¢ ® idygm-i-1.
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Braid group and braided symmetrizer

» For any m > 2, let

where S, is the symmetric group and s : S, — B,, is the section
map.
The map pm(Sm) is called the braided symmetrizer.
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Braid group and braided symmetrizer

» For any m > 2, let

where S, is the symmetric group and s : S, — B,, is the section
map.
The map pm(Sm) is called the braided symmetrizer.
Definition (P. Schauenburg, Comm. Algebra, 1996)
Let (V, c) be a braided vector space. The quotient

B(V) =k+ V + P V/ ker(pi(Sk))

k>2

is called the Nichols algebra of V. We say B(V) if of diagonal type if V
is of diagonal type.

4
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Root vector

> Let (V,c) be a braided vector space of diagonal type.
> Let X = {x1,x2,..., Xy} be a basis of V.
> X*: the set of non-empty words with letters in X.

Definition
For a Lyndon word w € X*, define the super-word [w] € T(V)
inductively given by:
1. [w]=w, if we X, and
2. [w] = [u][v] — x(deg(u),deg(v))[v][u], and w = uv is the Shirshow
decomposition of w.
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Root vector

> Let (V,c) be a braided vector space of diagonal type.
> Let X = {x1,x2,..., Xy} be a basis of V.
> X*: the set of non-empty words with letters in X.

Definition
For a Lyndon word w € X*, define the super-word [w] € T(V)
inductively given by:
1. [w]=w, if we X, and
2. [w] = [u][v] — x(deg(u),deg(v))[v][u], and w = uv is the Shirshow
decomposition of w.

Definition

Let w = vk and v be a Lyndon word. Then [w] is a root vector (of
B(V)) if [w] € B(V) not a linear combination of elements of the form
[vie]™[vk—1]™=2 - [va]™, and [wv1], ..., [vk] are super-letters with
wvy <o < Vg
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Root system

Theorem ( V. K. Kharchenko, Algebra Log., 1999 )

There exists a subset L C X* of Lyndon words, such that the elements

[Vk]mk-“[vl]ml, keNg, vi,..., vk €L, vy <wvp <--- <y,
0 < m; < h(v;) for any i with h(v;) # 1,

form a vector space basis of B(V).
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Root system

Theorem ( V. K. Kharchenko, Algebra Log., 1999 )

There exists a subset L C X* of Lyndon words, such that the elements

[Vk]mk-“[vl]ml, keNg, vi,..., vk €L, vy <wvp <--- <y,
0 < m; < h(v;) for any i with h(v;) # 1,

form a vector space basis of B(V).

Definition

Let A, = {deg(u) | u € L} be the positive roots of B(V). And the
root system of B(V)is A=A, U—-A,.

Definition (Multiplicity)

For any a € A, the number of elements u € L with deg(u) = « is called
the multiplicity of a.

v
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> Let (V,c) be a braided vector space of diagonal type of rank 2.

» (gij)1<ij<2 be the braiding matrix of V.
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> Let (V,c) be a braided vector space of diagonal type of rank 2.

» (gij)1<ij<2 be the braiding matrix of V.

» r=gi2G21, 9 = q11, S = g2
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> Let (V,c) be a braided vector space of diagonal type of rank 2.

» (gij)1<ij<2 be the braiding matrix of V.

> r=qi2921, 4 = qi1, S = G2
> For all k € Ny, let b = [[/5(1— ¢/r);
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\{

Let (V,c) be a braided vector space of diagonal type of rank 2.

v

(gij)1<ij<2 be the braiding matrix of V.

> r=qi2921, 4 = qi1, S = G2
For all k € No, let b = [\ (1 — ¢'r);

v

> adx: the adjoint action of T(V) such that for any v € T(V)
ad x1(v) = x1v — x(a1, deg(v))vx.
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> Let (V,c) be a braided vector space of diagonal type of rank 2.

» (gij)1<ij<2 be the braiding matrix of V.

> r=qi2921, 4 = qi1, S = G2
> For all k € Ny, let b = [[/5(1— ¢/r);

> adx: the adjoint action of T(V) such that for any v € T(V)
ad x1(v) = x1v — x(a1, deg(v))vx.
» For any k € Ny, let uy = (ad x1)¥(x2) € T (V).
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> Let (V,c) be a braided vector space of diagonal type of rank 2.

» (gij)1<ij<2 be the braiding matrix of V.
> r=qi2921, 4 = qi1, S = G2
> For all k € Ny, let b = [[/5(1— ¢/r);

> adx: the adjoint action of T(V) such that for any v € T(V)
ad x1(v) = x1v — x(a1, deg(v))vx.
» For any k € Ny, let uy = (ad x1)¥(x2) € T (V).

Lemma(M.Rosso, Inven.math.98, Lemma 14)
Let k € N, then u, =0 in B(V), if and only if (k); by = 0. J
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The element Py in T(V)

> Write dx = (k) by tuk, if (k),bk # 0.

Definition
For all k € No with (k). b # 0, let

Pe =31 o(—a21) gD 200 € T(V).
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The element Py in T(V)

> Write dx = (k) by tuk, if (k),bk # 0.

Definition
For all k € No with (k). b # 0, let

Pe =31 o(—a21) gD 200 € T(V).

Lemma
Let k € No with (k). bx # 0. Then P, =0 in B(V) iff

1+ (fr)ksqk("*l)/2 =0.
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Definition
Let J = Jg.rs € No be such that j € J if and only if

FU-D2(_pys 41 =0
and for any n € J with n < j such that

(U — n)_gwri-v/z, = 0,if j — n is odd.

{(JZ”)q,.+j_1,z =0,if j — nis even,
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Lemma

1. Let J; C J such that j € Jy iff
¢U=D/2(—r)s = —1 and ¢"t/=1r2 #£ 1, for any n € J with n < j;
2. Let Jo C J such that j € J, iff there exists n € J; with n < j, such
that

q("+j—1)/2r = —1and p|(j —n), ifj— nisodd.
Then J = J;1 UJ>.

{qn+j—1r2 =1and 2p|(j —n), ifj—niseven

Note that if char(k) = 0, then J = J;
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The case for char(k) =0

» For any m € No, Uy, = @7 o kujum—; € T(V)

Theorem

Assume that char(k) = 0. Let m € Ng such that (m);bm # 0. Then the
elements (ad x1)™(P;), j € J1 N [0, m] form a basis of ker(Syi2) N Up.
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The case for char(k) # 0

n—1
U, = Pkuiu,—; € T(V).
i=0

Lemma

Assume char(k) # 0. Let n € Np such that that (n), b, # 0. Suppose
that n € Jo, and that j, € J; with j, < n such that ¢"t»~1r2 = 1. Then
there exits a unique element L, € U/ N ker(S,;2) such that

— 51 di(Ln) = (ad x1)" " H(P;). )
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Theorem

Suppose that m € Ng and that (m); by, # 0. The elements
(adx1)™(P;), j € J1 N[0, m], and

(adx1)™"(L,),n € Jo N[0, m],
form a basis of ker(Sy,12) N Up,.
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Multiplicities of maq + 2a

Corollary
Let m € N such that (m), bn, # 0. Then the multiplicity of may + 20y is

m' —|Jn [0, m]|,
(m+1)/2 if mis odd,

m = {m/2 if mis even and qm2/4(r)m/2q #—1,
m/2+1  if mis even and g™ /4(r)™/2g = —1.
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Multiplicities of may + 2ar

Corollary
Let m € N such that (m), bn, # 0. Then the multiplicity of may + 20y is

m — ‘Jﬂ [0, m]|,
(m+1)/2 if mis odd,

m = {m/2 if mis even and qm2/4(r)m/2q #—1,
m/2+1  if mis even and g™ /4(r)™/2g = —1.

Proposition

Assume that k, m € Ng with m > k such that (k)!qbk £0,
and (k +1)4(1 — g*r) = 0. Then the multiplicity of ma; + 2a; is the
same as the multiplicity of (2k — m)a; + 2an of B(R1(V)).
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Corollary

Let m € Np.
1. Assume that m = 2k + 1 > 5 is odd and that (k + 3); by43 # 0.
Then may + 2a;3 is a root of B(V).
2. Assume that m = 2k > 8 and that (k + 4) b4 # 0. Then
may + 2a; is a root of B(V).

3. Assume that m € {1,2,3,4,6} and that (m),bm, # 0. Then
may + 2ap is not a root if and only if g, r, s satisfy the conditions
given in the following table.
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The cases for m=1,2,3,4,6

maoq + 2ai non-root conditions

ag + 2ap (I1+s)(1—rs)=0

200 +2ap (L+5s)(1—rs)(L+qgr’s)=0
3a1 + 2 s=-1, (3),‘7, =0

4oy + 200 s=-1,(3)_gr =00r

61 + 22 g=1s=-1,(3)_,=0
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Example

Assume that r = g2

[_22 _22} Apply the results above, we get,

The multiplicity for ai; + ap is 1;

The multiplicity for 2a; is 0

The multiplicity for ay + 2a; is 1;

1, ¢># -1

The multiplicity for 2a; + 2ap =
phicity Qi Qa2 {07 P =il

(note in sk is 1)
The multiplicity for 3a; + 2a is 1;
The multiplicity for may + 2, m > 4, is 0.

, s=q, g°> # 1, then the cartan matrix is

Ying Zheng | Root multiplicities for Nichols algebras of diagonal type




Thank you for attension!
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