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Notations

k is an algebraically closed field.

C is a fusion category over k.

For any simple object X of C, define

TrX (g) := 1
coevX−−−→ X ⊗ X ∗

g⊗idX∗−−−−→ X ∗∗ ⊗ X ∗
evX∗−−−→ 1;

TrX∗((g−1)∗) := 1
coevX∗−−−−→ X ∗⊗X ∗∗

(g−1)∗⊗idX∗∗−−−−−−−−→ X ∗∗∗⊗X ∗∗
evX∗∗−−−→ 1;

|X |2 := TrX (g)TrX∗((g−1)∗).

The global dimension of C is

dim(C) :=
∑

X∈Irr(C)

|X |2.

Example: dim(Rep(H)) = TrH(S2) for a semisimple Hopf algebra H.

A fusion category C over k is non-degenerate if dim(C) 6= 0 in k.
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Notations

If chk = 0, then dim(C) 6= 0 (i.e., C is always non-degenerate).

If chk = p, it is possible dim(C) = 0 (e.g., the module category of
function algebra Fun(G ,k), where p | |G |).

A non-degenerate fusion category over k of chk = p shares properties
with the one for a fusion category over k of chk = 0 (Etingof, et al,
Ann Math, 2005).

Question: How to characterize a non-degenerate fusion category?

A pivotal fusion category C is non-degenerate ⇔ Gr(C)⊗Z k is
semisimple (Shimizu, JPAA, 2017).

Question: When is Gr(C)⊗Z k semisimple?
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The Casimir numbers and determinants

Let C be a fusion category over k with the Grothendieck ring Gr(C).

The Casimir operator: c : Gr(C)→ Gr(C), c(a) =
∑

X∈Irr(C) XaX ∗.

The Casimir number: a non-negative integer mC satisfying
Imc ∩ Z = (mC), namely, mC is a minimal non-negative integer such
that

∑
X∈Irr(C) XaX ∗ = mC for some a ∈ Gr(C).

mC is a category invariant of C.

c(1) =
∑

X∈Irr(C) XX ∗,

c(1)


...

X
...

 = [c(1)]


...

X
...

 .

[c(1)] is a positive definite integer matrix, dC := det[c(1)] > 0 called
the determinant of C.
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Example 1

Let C be a pointed fusion category over a field k. The Grothendieck ring
of C is the group ring ZG for a finite group G .

The Casimir number mC = |G |.
The determinant dC = |G ||G |.
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Example 2

Let C be a near-group category over k. The Grothendieck ring Gr(C) has a
basis G ∪ {X} obey the following multiplication rule:

g · h = gh, g · X = X · g = X , X 2 =
∑
g∈G

g + ρX ,

for all g , h ∈ G and an integer ρ ≥ 0.

The Casimir number mC =

{
(4|G |+ ρ2)|G |, 2 - ρ;
1
2(4|G |+ ρ2)|G |, 2 | ρ.

[c(1)] =

[
M u
ut ρ2 + 2|G |

]
, where M is a square matrix of size |G |

whose diagonal elements are all |G |+ 1 and off-diagonal elements are
all 1, u is a column vector of size |G | whose elements are all ρ.

The determinant dC = det[c(1)] = (4|G |+ ρ2)|G ||G |.
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Example 3

Let C be a modular category over a field k with isomorphism classes of
simple objects {Xi}i∈I . That is, C is a spherical fusion category with a
braiding c such that the S-matrix S = [sij ] is invertible in k, where
sij = Tr(cXjXi

◦ cXiXj
).

For any i ∈ I , the map

hi : Xj 7→
sij

dim(Xi )
for j ∈ I

defines a homomorphism from Gr(C) to k. Note that all eigenvalues of the
matrix [c(1)] are hi (c(1)) for i ∈ I . Moreover,

hi (c(1)) =
∑
j∈I

hi (Xj)hi (Xj∗) =
∑
j∈I

sijsij∗

dim(Xi )2
=

dim(C)

dim(Xi )2
.

It follows that

dC =
∏
i∈I

hi (c(1)) =
(dim C)|I |∏
i∈I dim(Xi )2

.
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Casimir numbers vs. determinants

Proposition

Let C be a fusion category over k. For any field K , the following
statements are equivalent:

1 The determinant dC 6= 0 in K .

2 The Casimir number mC 6= 0 in K .

3 The Grothendieck algebra Gr(C)⊗Z K is semisimple.

Therefore,

Theorem

Let C be a fusion category over k. For any prime p, p | mC ⇔ p | dC .

For a pivotal fusion category C,

C is non-degenerate ⇔ Gr(C)⊗Z k is semisimple
⇔ mC or dC 6= 0 in k.
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Example 4

Let C be a Verlinde modular category with isomorphism classes of simple
objects {Xi}0≤i≤n. The Grothendieck ring Gr(C) of C is the truncated

Verlinde ring whose multiplication rule is XiXj =
∑min{i ,j}

l=max{i+j−n,0} Xi+j−2l .

Gr(C) ∼= Z[X ]/(En+1(X )), where

En+1(X ) =

[ n+1
2

]∑
j=0

(
n + 1− j

j

)
(−1)jX n+1−2j

is the n + 1-th Dickson polynomial.

The Casimir number mC = 2n + 4.

C is non-degenerate ⇔ Gr(C)⊗Z k is semisimple ⇔ 2n + 4 6= 0 in k

⇔ En+1(X ) has no multiple factors in k[X ].
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Properties of Casimir numbers and determinants

Let C be a fusion category over k with Irr(C) = {Xi}1≤i≤n. Denote C̃ the

pivotalization of C: Irr(C̃) = {X±i }1≤i≤n and 1+ = 1, 1− ⊗ 1− = 1,
dim(1−) = −1, and X±i ⊗ 1− = 1− ⊗ X±i = X∓i .

Proposition

mC | mC̃ and dC | dC̃ .

∑
1≤i≤n

XiX
∗
i  C ⇒

∑
1≤i≤n

X±i (X±i )∗  2

(
A B
B A

)
,

where A + B = C . It follows that

dC = det(A + B)

dC̃ = 22n det(A + B) det(A− B).

Question: p | dC ⇔ p | dC̃ (for any prime p 6= 2)?
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The case of semisimple Hopf algebras

Proposition

For a semisimple pivotal Hopf algebra H, Rep(H) is non-degenerate ⇔
dRep(H) 6= 0 in k ⇔ S2 = id and dimk(H) 6= 0 in k.

For a semisimple and cosemisimple Hopf algebra H over k, dRep(H) 6= 0 in
k.

Proposition

Let H be a semisimple and cosemisimple Hopf algebra over k. If Gr(H) is
commutative, then dRep(H) and dimk H have the same prime factors.

Zhihua Wang (Taizhou College) The Casimir number and the determinant August 23, 2021 11 / 18



The case of semisimple Hopf algebras

Proposition

For a semisimple pivotal Hopf algebra H, Rep(H) is non-degenerate ⇔
dRep(H) 6= 0 in k ⇔ S2 = id and dimk(H) 6= 0 in k.

For a semisimple and cosemisimple Hopf algebra H over k, dRep(H) 6= 0 in
k.

Proposition

Let H be a semisimple and cosemisimple Hopf algebra over k. If Gr(H) is
commutative, then dRep(H) and dimk H have the same prime factors.

Zhihua Wang (Taizhou College) The Casimir number and the determinant August 23, 2021 11 / 18



The case of semisimple Hopf algebras

Proposition

For a semisimple pivotal Hopf algebra H, Rep(H) is non-degenerate ⇔
dRep(H) 6= 0 in k ⇔ S2 = id and dimk(H) 6= 0 in k.

For a semisimple and cosemisimple Hopf algebra H over k, dRep(H) 6= 0 in
k.

Proposition

Let H be a semisimple and cosemisimple Hopf algebra over k. If Gr(H) is
commutative, then dRep(H) and dimk H have the same prime factors.

Zhihua Wang (Taizhou College) The Casimir number and the determinant August 23, 2021 11 / 18



The case of semisimple Hopf algebras

Theorem

Let H be a semisimple and cosemisimple Hopf algebra over k and D(H)
the Drinfeld double of H. Then dRep(D(H)) and dimk H have the same
prime factors.

Question: For a semisimple Hopf algebra H, p | dimk H ⇔ p | dRep(H)?
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Determinants vs. Frobenius-Schur exponents

Let C be a spherical fusion category over C with isomorphism classes of
simple objects {Xi}i∈I .

The Frobenius-Schur exponent N of C is the least positive integer N
such that νN(X ) = dim(X ) for all objects X of C, where νN(X ) is the
N-th Frobenius-Schur indicator of X (Siu-Hung Ng, et al, Adv Math,
2007).

N = ord(θ), the order of the twist θ of Z (C).

Let ξN be a primitive N-th root of unity. Then dim(X ) ∈ Z[ξN ] for
any object X of C.

For any prime ideal p of Z[ξN ], dim(C) ∈ Z[ξN ]/p.
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Determinants vs. Frobenius-Schur exponents

Proposition

For any prime ideal p of Z[ξN ],

1 dC 6= 0 in Z[ξN ]/p ⇔ dim(C) 6= 0 in Z[ξN ]/p.

2 The ideals (dC) and (dim(C)) have the same prime ideal factors in
Z[ξN ].

Cauchy theorem: The ideals (N) and (dim(C)) have the same prime ideal
factors in Z[ξN ] (Bruillard, et al, J. Am. Math. Soc, 2016).
Example: For a group G with |G | 6= 0 in k, exp(G ) and |G | have the same
prime factors.

Theorem

Let C be a spherical fusion over C. Then N and dC have the same prime
factors.

Remark: For a group G with |G | 6= 0 in k, |G |, exp(G ), dRep(G) and
mRep(G) have the same prime factors.
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Non-semisimple case

Let H be a f.d. Hopf algebra of finite representation type. Let r(H) be the
Green ring of H with a pair of dual pases {δ∗[X ], [X ] | [X ] ∈ ind(H)} with

respective to the bilinear form ([X ], [Y ]) = dimk HomH(X ,Y ∗). Consider
the Casimir operator

c : r(H)→ r(H), c(x) =
∑

[X ]∈ind(H)

[X ]xδ∗[X ].

Then Imc ∩ Z is an ideal of Z, its non-negative generator is called the
Casimir number of Rep(H) (a generalization of semisimple case).

dimk(H) divides the casimir number of Rep(H);

If Hopf algebras H1 and H2 are gauge equivalent, then r(H1) ∼= r(H2)
and lead to the same Casimir numbers.
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Non-semisimple case

Theorem

Let H be a Hopf algebra of finite representation type over k. The Green
algebra r(H)⊗Z K over a field K is Jacobson semisimple iff the Casimir
number of Rep(H) is not zero in K .

Remark: If p | dimk(H), then r(H)⊗Z K is not Jacobson semisimple for a
field K of charK = p.

Theorem

Let H be a Hopf algebra of finite representation type over k. The Green
ring r(H) is Jacobson semisimple iff the Casimir number of Rep(H) is not
zero.
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Non-semisimple case

Let G be a cyclic group of order p and the field k has characteristic p.
Consider the Hopf algebra kG :

The Green ring r(kG ) ∼= Z[X ]/((X − 2)Ep−1(X ));

The Casimir number of r(kG ) is 2p2;

The Green ring Z[X ]/((X − 2)Ep−1(X )) is semisimple;

The Green algebra K [X ]/((X − 2)Ep−1(X )) is semisimple iff
charK 6= 2, p;

If charK = p, then the Jacobson radical of K [X ]/((X − 2)Ep−1(X ))

is generator by X 2 − 4;

If charK = 2, then the Jacobson radical of K [X ]/((X − 2)Ep−1(X ))
is generator by

[ p−1
2

]∑
i=0

(
p − 1− i

i

)
(−1)iX

p+1
2
−i .

Zhihua Wang (Taizhou College) The Casimir number and the determinant August 23, 2021 17 / 18



Thank you!

Zhihua Wang (Taizhou College) The Casimir number and the determinant August 23, 2021 18 / 18


