The Casimir number and the determinant of a fusion category

Zhihua Wang

(a joint work with Libin Li and Gongxiang Liu)

Taizhou College

August 23, 2021

• $\ensuremath{\mathbbm k}$ is an algebraically closed field.

< 🗗 🕨 🔸

- $\ensuremath{\mathbbm k}$ is an algebraically closed field.
- ${\mathcal C}$ is a fusion category over $\Bbbk.$

- k is an algebraically closed field.
- \mathcal{C} is a fusion category over \Bbbk .
- For any simple object X of C, define

$$\begin{aligned} \mathsf{Tr}_X(g) &:= \mathbf{1} \xrightarrow{\mathsf{coev}_X} X \otimes X^* \xrightarrow{g \otimes id_{X^*}} X^{**} \otimes X^* \xrightarrow{\mathsf{ev}_{X^*}} \mathbf{1}; \\ \mathsf{Tr}_{X^*}((g^{-1})^*) &:= \mathbf{1} \xrightarrow{\mathsf{coev}_{X^*}} X^* \otimes X^{**} \xrightarrow{(g^{-1})^* \otimes id_{X^{**}}} X^{***} \otimes X^{**} \xrightarrow{\mathsf{ev}_{X^{**}}} \mathbf{1}; \\ &|X|^2 &:= \mathsf{Tr}_X(g)\mathsf{Tr}_{X^*}((g^{-1})^*). \end{aligned}$$

The global dimension of $\ensuremath{\mathcal{C}}$ is

$$\dim(\mathcal{C}) := \sum_{X \in \mathsf{Irr}(\mathcal{C})} |X|^2.$$

Example: dim(Rep(H)) = Tr_H(S^2) for a semisimple Hopf algebra H.

- k is an algebraically closed field.
- \mathcal{C} is a fusion category over \Bbbk .
- For any simple object X of C, define

$$\begin{aligned} \mathsf{Tr}_X(g) &:= \mathbf{1} \xrightarrow{\mathsf{coev}_X} X \otimes X^* \xrightarrow{g \otimes id_{X^*}} X^{**} \otimes X^* \xrightarrow{\mathsf{ev}_{X^*}} \mathbf{1}; \\ \mathsf{Tr}_{X^*}((g^{-1})^*) &:= \mathbf{1} \xrightarrow{\mathsf{coev}_{X^*}} X^* \otimes X^{**} \xrightarrow{(g^{-1})^* \otimes id_{X^{**}}} X^{***} \otimes X^{**} \xrightarrow{\mathsf{ev}_{X^{**}}} \mathbf{1}; \\ &|X|^2 &:= \mathsf{Tr}_X(g)\mathsf{Tr}_{X^*}((g^{-1})^*). \end{aligned}$$

The global dimension of $\ensuremath{\mathcal{C}}$ is

$$\dim(\mathcal{C}) := \sum_{X \in \mathsf{Irr}(\mathcal{C})} |X|^2.$$

Example: dim(Rep(H)) = Tr_H(S²) for a semisimple Hopf algebra H.

• A fusion category C over \Bbbk is non-degenerate if dim $(C) \neq 0$ in \Bbbk .

• If chk = 0, then $dim(\mathcal{C}) \neq 0$ (i.e., \mathcal{C} is always non-degenerate).

A 1

- If chk = 0, then $dim(\mathcal{C}) \neq 0$ (i.e., \mathcal{C} is always non-degenerate).
- If chk = p, it is possible dim(C) = 0 (e.g., the module category of function algebra Fun(G, k), where p | |G|).

- If chk = 0, then $dim(\mathcal{C}) \neq 0$ (i.e., \mathcal{C} is always non-degenerate).
- If chk = p, it is possible dim(C) = 0 (e.g., the module category of function algebra Fun(G, k), where p | |G|).
- A non-degenerate fusion category over k of chk = p shares properties with the one for a fusion category over k of chk = 0 (Etingof, et al, Ann Math, 2005).

- If chk = 0, then $dim(\mathcal{C}) \neq 0$ (i.e., \mathcal{C} is always non-degenerate).
- If chk = p, it is possible dim(C) = 0 (e.g., the module category of function algebra Fun(G, k), where p | |G|).
- A non-degenerate fusion category over k of chk = p shares properties with the one for a fusion category over k of chk = 0 (Etingof, et al, Ann Math, 2005).
- Question: How to characterize a non-degenerate fusion category?

- If chk = 0, then $dim(\mathcal{C}) \neq 0$ (i.e., \mathcal{C} is always non-degenerate).
- If chk = p, it is possible dim(C) = 0 (e.g., the module category of function algebra Fun(G, k), where p | |G|).
- A non-degenerate fusion category over k of chk = p shares properties with the one for a fusion category over k of chk = 0 (Etingof, et al, Ann Math, 2005).
- Question: How to characterize a non-degenerate fusion category?
- A pivotal fusion category C is non-degenerate ⇔ Gr(C) ⊗_Z k is semisimple (Shimizu, JPAA, 2017).

- If chk = 0, then $dim(\mathcal{C}) \neq 0$ (i.e., \mathcal{C} is always non-degenerate).
- If chk = p, it is possible dim(C) = 0 (e.g., the module category of function algebra Fun(G, k), where p | |G|).
- A non-degenerate fusion category over k of chk = p shares properties with the one for a fusion category over k of chk = 0 (Etingof, et al, Ann Math, 2005).
- Question: How to characterize a non-degenerate fusion category?
- A pivotal fusion category C is non-degenerate ⇔ Gr(C) ⊗_Z k is semisimple (Shimizu, JPAA, 2017).
- Question: When is $\mathsf{Gr}(\mathcal{C})\otimes_{\mathbb{Z}} \Bbbk$ semisimple?

Let C be a fusion category over \Bbbk with the Grothendieck ring Gr(C).

• The Casimir operator: $c : Gr(\mathcal{C}) \to Gr(\mathcal{C}), c(a) = \sum_{X \in Irr(\mathcal{C})} XaX^*$.

- The Casimir operator: $c : Gr(\mathcal{C}) \to Gr(\mathcal{C}), c(a) = \sum_{X \in Irr(\mathcal{C})} XaX^*$.
- The Casimir number: a non-negative integer $m_{\mathcal{C}}$ satisfying $\operatorname{Im} c \cap \mathbb{Z} = (m_{\mathcal{C}})$, namely, $m_{\mathcal{C}}$ is a minimal non-negative integer such that $\sum_{X \in \operatorname{Irr}(\mathcal{C})} XaX^* = m_{\mathcal{C}}$ for some $a \in \operatorname{Gr}(\mathcal{C})$.

- The Casimir operator: $c : Gr(\mathcal{C}) \to Gr(\mathcal{C}), c(a) = \sum_{X \in Irr(\mathcal{C})} XaX^*$.
- The Casimir number: a non-negative integer $m_{\mathcal{C}}$ satisfying $\operatorname{Im} c \cap \mathbb{Z} = (m_{\mathcal{C}})$, namely, $m_{\mathcal{C}}$ is a minimal non-negative integer such that $\sum_{X \in \operatorname{Irr}(\mathcal{C})} XaX^* = m_{\mathcal{C}}$ for some $a \in \operatorname{Gr}(\mathcal{C})$.
- $m_{\mathcal{C}}$ is a category invariant of \mathcal{C} .

- The Casimir operator: $c : Gr(\mathcal{C}) \to Gr(\mathcal{C}), c(a) = \sum_{X \in Irr(\mathcal{C})} XaX^*$.
- The Casimir number: a non-negative integer $m_{\mathcal{C}}$ satisfying $\operatorname{Im} c \cap \mathbb{Z} = (m_{\mathcal{C}})$, namely, $m_{\mathcal{C}}$ is a minimal non-negative integer such that $\sum_{X \in \operatorname{Irr}(\mathcal{C})} XaX^* = m_{\mathcal{C}}$ for some $a \in \operatorname{Gr}(\mathcal{C})$.
- $m_{\mathcal{C}}$ is a category invariant of \mathcal{C} .

•
$$c(1) = \sum_{X \in Irr(\mathcal{C})} XX^*$$
,

$$c(1)\left(\begin{array}{c} \vdots \\ X \\ \vdots \end{array}\right) = [c(1)]\left(\begin{array}{c} \vdots \\ X \\ \vdots \end{array}\right)$$

Let C be a fusion category over \Bbbk with the Grothendieck ring Gr(C).

- The Casimir operator: $c : Gr(\mathcal{C}) \to Gr(\mathcal{C}), c(a) = \sum_{X \in Irr(\mathcal{C})} XaX^*$.
- The Casimir number: a non-negative integer $m_{\mathcal{C}}$ satisfying $\operatorname{Im} c \cap \mathbb{Z} = (m_{\mathcal{C}})$, namely, $m_{\mathcal{C}}$ is a minimal non-negative integer such that $\sum_{X \in \operatorname{Irr}(\mathcal{C})} XaX^* = m_{\mathcal{C}}$ for some $a \in \operatorname{Gr}(\mathcal{C})$.
- $m_{\mathcal{C}}$ is a category invariant of \mathcal{C} .

•
$$c(1) = \sum_{X \in \operatorname{Irr}(\mathcal{C})} XX^*$$
,

$$c(1)\left(egin{array}{c} dots\ X\ dots\ \end{array}
ight)=[c(1)]\left(egin{array}{c} dots\ X\ dots\ \end{array}
ight).$$

/ \

• [c(1)] is a positive definite integer matrix, $d_{\mathcal{C}} := \det[c(1)] > 0$ called the determinant of \mathcal{C} .

Let C be a pointed fusion category over a field \Bbbk . The Grothendieck ring of C is the group ring $\mathbb{Z}G$ for a finite group G.

Let C be a pointed fusion category over a field \Bbbk . The Grothendieck ring of C is the group ring $\mathbb{Z}G$ for a finite group G.

• The Casimir number $m_{\mathcal{C}} = |G|$.

Let C be a pointed fusion category over a field \Bbbk . The Grothendieck ring of C is the group ring $\mathbb{Z}G$ for a finite group G.

- The Casimir number $m_{\mathcal{C}} = |G|$.
- The determinant $d_{\mathcal{C}} = |\mathcal{G}|^{|\mathcal{G}|}$.

$$g \cdot h = gh, \ g \cdot X = X \cdot g = X, \ X^2 = \sum_{g \in G} g + \rho X,$$

for all $g, h \in G$ and an integer $\rho \ge 0$.

$$g \cdot h = gh, \ g \cdot X = X \cdot g = X, \ X^2 = \sum_{g \in G} g + \rho X,$$

for all $g, h \in G$ and an integer $\rho \ge 0$. • The Casimir number $m_{\mathcal{C}} = \begin{cases} (4|G| + \rho^2)|G|, & 2 \nmid \rho; \\ \frac{1}{2}(4|G| + \rho^2)|G|, & 2 \mid \rho. \end{cases}$

$$g \cdot h = gh, \ g \cdot X = X \cdot g = X, \ X^2 = \sum_{g \in G} g + \rho X,$$

for all $g, h \in G$ and an integer $\rho \ge 0$.

- The Casimir number $m_{\mathcal{C}} = \begin{cases} (4|G| + \rho^2)|G|, & 2 \nmid \rho; \\ \frac{1}{2}(4|G| + \rho^2)|G|, & 2 \mid \rho. \end{cases}$
- $[c(1)] = \begin{bmatrix} M & \mathbf{u} \\ \mathbf{u}^t & \rho^2 + 2|G| \end{bmatrix}$, where *M* is a square matrix of size |G| whose diagonal elements are all |G| + 1 and off-diagonal elements are all 1, \mathbf{u} is a column vector of size |G| whose elements are all ρ .

$$g \cdot h = gh, \ g \cdot X = X \cdot g = X, \ X^2 = \sum_{g \in G} g + \rho X,$$

for all $g, h \in G$ and an integer $\rho \ge 0$.

- The Casimir number $m_{\mathcal{C}} = \begin{cases} (4|G| + \rho^2)|G|, & 2 \nmid \rho; \\ \frac{1}{2}(4|G| + \rho^2)|G|, & 2 \mid \rho. \end{cases}$
- $[c(1)] = \begin{bmatrix} M & \mathbf{u} \\ \mathbf{u}^t & \rho^2 + 2|G| \end{bmatrix}$, where *M* is a square matrix of size |G| whose diagonal elements are all |G| + 1 and off-diagonal elements are all 1, \mathbf{u} is a column vector of size |G| whose elements are all ρ .
- The determinant $d_{\mathcal{C}} = \det[c(1)] = (4|G| + \rho^2)|G|^{|G|}$.

Example 3

Let C be a modular category over a field \Bbbk with isomorphism classes of simple objects $\{X_i\}_{i \in I}$. That is, C is a spherical fusion category with a braiding c such that the S-matrix $S = [s_{ij}]$ is invertible in \Bbbk , where $s_{ij} = \text{Tr}(c_{X_jX_i} \circ c_{X_iX_j})$.

Example 3

Let C be a modular category over a field \Bbbk with isomorphism classes of simple objects $\{X_i\}_{i \in I}$. That is, C is a spherical fusion category with a braiding c such that the S-matrix $S = [s_{ij}]$ is invertible in \Bbbk , where $s_{ij} = \text{Tr}(c_{X_jX_i} \circ c_{X_iX_j})$. For any $i \in I$, the map

$$h_i: X_j \mapsto rac{s_{ij}}{\dim(X_i)} \ \ ext{for} \ j \in I$$

defines a homomorphism from $Gr(\mathcal{C})$ to \Bbbk . Note that all eigenvalues of the matrix [c(1)] are $h_i(c(1))$ for $i \in I$. Moreover,

$$h_i(c(1))=\sum_{j\in I}h_i(X_j)h_i(X_{j^*})=\sum_{j\in I}rac{s_{ij}s_{ij^*}}{\dim(X_i)^2}=rac{\dim(\mathcal{C})}{\dim(X_i)^2}.$$

Example 3

Let C be a modular category over a field \Bbbk with isomorphism classes of simple objects $\{X_i\}_{i \in I}$. That is, C is a spherical fusion category with a braiding c such that the S-matrix $S = [s_{ij}]$ is invertible in \Bbbk , where $s_{ij} = \text{Tr}(c_{X_jX_i} \circ c_{X_iX_j})$. For any $i \in I$, the map

$$h_i: X_j \mapsto rac{s_{ij}}{\dim(X_i)} \ \ ext{for} \ j \in I$$

defines a homomorphism from $Gr(\mathcal{C})$ to \Bbbk . Note that all eigenvalues of the matrix [c(1)] are $h_i(c(1))$ for $i \in I$. Moreover,

$$h_i(c(1)) = \sum_{j \in I} h_i(X_j)h_i(X_{j^*}) = \sum_{j \in I} \frac{s_{ij}s_{ij^*}}{\dim(X_i)^2} = \frac{\dim(\mathcal{C})}{\dim(X_i)^2}.$$

It follows that

$$d_{\mathcal{C}} = \prod_{i \in I} h_i(c(1)) = \frac{(\dim \mathcal{C})^{|I|}}{\prod_{i \in I} \dim(X_i)^2}.$$

Let C be a fusion category over \Bbbk . For any field K, the following statements are equivalent:

Let C be a fusion category over \Bbbk . For any field K, the following statements are equivalent:

1 The determinant $d_{\mathcal{C}} \neq 0$ in K.

Let C be a fusion category over \Bbbk . For any field K, the following statements are equivalent:

- **1** The determinant $d_{\mathcal{C}} \neq 0$ in K.
- **2** The Casimir number $m_{\mathcal{C}} \neq 0$ in K.

Let C be a fusion category over \Bbbk . For any field K, the following statements are equivalent:

- The determinant $d_{\mathcal{C}} \neq 0$ in K.
- **2** The Casimir number $m_{\mathcal{C}} \neq 0$ in K.
- **③** The Grothendieck algebra $Gr(\mathcal{C}) \otimes_{\mathbb{Z}} K$ is semisimple.

Let C be a fusion category over \Bbbk . For any field K, the following statements are equivalent:

- The determinant $d_{\mathcal{C}} \neq 0$ in K.
- **2** The Casimir number $m_{\mathcal{C}} \neq 0$ in K.
- **③** The Grothendieck algebra $Gr(\mathcal{C}) \otimes_{\mathbb{Z}} K$ is semisimple.

Therefore,

Theorem

Let C be a fusion category over k. For any prime p, $p \mid m_{\mathcal{C}} \Leftrightarrow p \mid d_{\mathcal{C}}$.

Let C be a fusion category over \Bbbk . For any field K, the following statements are equivalent:

- The determinant $d_{\mathcal{C}} \neq 0$ in K.
- **2** The Casimir number $m_{\mathcal{C}} \neq 0$ in K.
- **③** The Grothendieck algebra $Gr(\mathcal{C}) \otimes_{\mathbb{Z}} K$ is semisimple.

Therefore,

Theorem

Let C be a fusion category over k. For any prime p, $p \mid m_{\mathcal{C}} \Leftrightarrow p \mid d_{\mathcal{C}}$.

For a pivotal fusion category \mathcal{C} ,

Let C be a fusion category over \Bbbk . For any field K, the following statements are equivalent:

- The determinant $d_{\mathcal{C}} \neq 0$ in K.
- **2** The Casimir number $m_{\mathcal{C}} \neq 0$ in K.
- **③** The Grothendieck algebra $Gr(\mathcal{C}) \otimes_{\mathbb{Z}} K$ is semisimple.

Therefore,

Theorem

Let C be a fusion category over k. For any prime p, $p \mid m_{\mathcal{C}} \Leftrightarrow p \mid d_{\mathcal{C}}$.

For a pivotal fusion category \mathcal{C} ,

• \mathcal{C} is non-degenerate \Leftrightarrow $\mathsf{Gr}(\mathcal{C})\otimes_{\mathbb{Z}} \Bbbk$ is semisimple

Let C be a fusion category over \Bbbk . For any field K, the following statements are equivalent:

- The determinant $d_{\mathcal{C}} \neq 0$ in K.
- **2** The Casimir number $m_{\mathcal{C}} \neq 0$ in K.
- **③** The Grothendieck algebra $Gr(\mathcal{C}) \otimes_{\mathbb{Z}} K$ is semisimple.

Therefore,

Theorem

Let C be a fusion category over k. For any prime p, $p \mid m_{\mathcal{C}} \Leftrightarrow p \mid d_{\mathcal{C}}$.

For a pivotal fusion category \mathcal{C} ,

• C is non-degenerate \Leftrightarrow $Gr(C) \otimes_{\mathbb{Z}} \Bbbk$ is semisimple $\Leftrightarrow m_{\mathcal{C}}$ or $d_{\mathcal{C}} \neq 0$ in \Bbbk .

Let C be a Verlinde modular category with isomorphism classes of simple objects $\{X_i\}_{0 \le i \le n}$. The Grothendieck ring Gr(C) of C is the truncated Verlinde ring whose multiplication rule is $X_i X_j = \sum_{l=\max\{i+j-n,0\}}^{\min\{i,j\}} X_{i+j-2l}$.

Example 4

Let C be a Verlinde modular category with isomorphism classes of simple objects $\{X_i\}_{0 \le i \le n}$. The Grothendieck ring Gr(C) of C is the truncated Verlinde ring whose multiplication rule is $X_iX_j = \sum_{l=\max\{i+j-n,0\}}^{\min\{i,j\}} X_{i+j-2l}$.

• $\operatorname{Gr}(\mathcal{C}) \cong \mathbb{Z}[X]/(E_{n+1}(X))$, where

$$E_{n+1}(X) = \sum_{j=0}^{\left\lfloor \frac{n+1}{2} \right\rfloor} {\binom{n+1-j}{j}} (-1)^j X^{n+1-2j}$$

is the n + 1-th Dickson polynomial.

Example 4

Let C be a Verlinde modular category with isomorphism classes of simple objects $\{X_i\}_{0 \le i \le n}$. The Grothendieck ring Gr(C) of C is the truncated Verlinde ring whose multiplication rule is $X_iX_j = \sum_{l=\max\{i+j-n,0\}}^{\min\{i,j\}} X_{i+j-2l}$.

• $\operatorname{Gr}(\mathcal{C}) \cong \mathbb{Z}[X]/(E_{n+1}(X))$, where

$$E_{n+1}(X) = \sum_{j=0}^{\left\lfloor \frac{n+1}{2} \right\rfloor} {\binom{n+1-j}{j}} (-1)^j X^{n+1-2j}$$

is the n + 1-th Dickson polynomial.

• The Casimir number $m_{\mathcal{C}} = 2n + 4$.

Let C be a Verlinde modular category with isomorphism classes of simple objects $\{X_i\}_{0 \le i \le n}$. The Grothendieck ring Gr(C) of C is the truncated Verlinde ring whose multiplication rule is $X_iX_j = \sum_{l=\max\{i+j-n,0\}}^{\min\{i,j\}} X_{i+j-2l}$.

• $\operatorname{Gr}(\mathcal{C}) \cong \mathbb{Z}[X]/(E_{n+1}(X))$, where

$$E_{n+1}(X) = \sum_{j=0}^{\left[\frac{n+1}{2}\right]} {\binom{n+1-j}{j}} (-1)^j X^{n+1-2j}$$

is the n + 1-th Dickson polynomial.

- The Casimir number $m_{\mathcal{C}} = 2n + 4$.
- C is non-degenerate \Leftrightarrow $Gr(C) \otimes_{\mathbb{Z}} \Bbbk$ is semisimple $\Leftrightarrow 2n + 4 \neq 0$ in \Bbbk $\Leftrightarrow E_{n+1}(X)$ has no multiple factors in $\Bbbk[X]$.

Let C be a fusion category over \mathbb{k} with $\operatorname{Irr}(C) = \{X_i\}_{1 \leq i \leq n}$. Denote \widetilde{C} the pivotalization of C: $\operatorname{Irr}(\widetilde{C}) = \{X_i^{\pm}\}_{1 \leq i \leq n}$ and $\mathbf{1}^+ = \mathbf{1}, \ \mathbf{1}^- \otimes \mathbf{1}^- = \mathbf{1}, \ \dim(\mathbf{1}^-) = -1, \ \operatorname{and} \ X_i^{\pm} \otimes \mathbf{1}^- = \mathbf{1}^- \otimes X_i^{\pm} = X_i^{\mp}.$

Let C be a fusion category over \Bbbk with $Irr(C) = \{X_i\}_{1 \le i \le n}$. Denote \widetilde{C} the pivotalization of C: $Irr(\widetilde{C}) = \{X_i^{\pm}\}_{1 \le i \le n}$ and $\mathbf{1}^+ = \mathbf{1}, \ \mathbf{1}^- \otimes \mathbf{1}^- = \mathbf{1}, \ \dim(\mathbf{1}^-) = -1$, and $X_i^{\pm} \otimes \mathbf{1}^- = \mathbf{1}^- \otimes X_i^{\pm} = X_i^{\pm}$.

Proposition

 $m_{\mathcal{C}} \mid m_{\widetilde{\mathcal{C}}}$ and $d_{\mathcal{C}} \mid d_{\widetilde{\mathcal{C}}}$.

$$\sum_{1\leq i\leq n} X_i X_i^* \rightsquigarrow C \Rightarrow \sum_{1\leq i\leq n} X_i^{\pm} (X_i^{\pm})^* \rightsquigarrow 2 \begin{pmatrix} A & B \\ B & A \end{pmatrix},$$

where A + B = C. It follows that

• $d_{\mathcal{C}} = \det(A + B)$

Let C be a fusion category over \Bbbk with $Irr(C) = \{X_i\}_{1 \le i \le n}$. Denote \widetilde{C} the pivotalization of C: $Irr(\widetilde{C}) = \{X_i^{\pm}\}_{1 \le i \le n}$ and $\mathbf{1}^+ = \mathbf{1}, \ \mathbf{1}^- \otimes \mathbf{1}^- = \mathbf{1}, \ \dim(\mathbf{1}^-) = -1$, and $X_i^{\pm} \otimes \mathbf{1}^- = \mathbf{1}^- \otimes X_i^{\pm} = X_i^{\pm}$.

Proposition

 $m_{\mathcal{C}} \mid m_{\widetilde{\mathcal{C}}}$ and $d_{\mathcal{C}} \mid d_{\widetilde{\mathcal{C}}}$.

$$\sum_{1 \leq i \leq n} X_i X_i^* \rightsquigarrow C \Rightarrow \sum_{1 \leq i \leq n} X_i^{\pm} (X_i^{\pm})^* \rightsquigarrow 2 \begin{pmatrix} A & B \\ B & A \end{pmatrix},$$

where A + B = C. It follows that

Let C be a fusion category over \Bbbk with $Irr(C) = \{X_i\}_{1 \le i \le n}$. Denote \widetilde{C} the pivotalization of C: $Irr(\widetilde{C}) = \{X_i^{\pm}\}_{1 \le i \le n}$ and $\mathbf{1}^+ = \mathbf{1}, \ \mathbf{1}^- \otimes \mathbf{1}^- = \mathbf{1}, \ \dim(\mathbf{1}^-) = -1$, and $X_i^{\pm} \otimes \mathbf{1}^- = \mathbf{1}^- \otimes X_i^{\pm} = X_i^{\pm}$.

Proposition

 $m_{\mathcal{C}} \mid m_{\widetilde{\mathcal{C}}}$ and $d_{\mathcal{C}} \mid d_{\widetilde{\mathcal{C}}}$.

$$\sum_{1 \leq i \leq n} X_i X_i^* \rightsquigarrow C \Rightarrow \sum_{1 \leq i \leq n} X_i^{\pm} (X_i^{\pm})^* \rightsquigarrow 2 \begin{pmatrix} A & B \\ B & A \end{pmatrix},$$

where A + B = C. It follows that

•
$$d_{\mathcal{C}} = \det(A + B)$$

• $d_{\widetilde{\mathcal{C}}} = 2^{2n} \det(A + B) \det(A - B).$
• Question: $p \mid d_{\mathcal{C}} \Leftrightarrow p \mid d_{\widetilde{\mathcal{C}}}$ (for any prime $p \neq 2$)?

Proposition

For a semisimple pivotal Hopf algebra H, $\operatorname{Rep}(H)$ is non-degenerate $\Leftrightarrow d_{\operatorname{Rep}(H)} \neq 0$ in $\Bbbk \Leftrightarrow S^2 = id$ and $\dim_{\Bbbk}(H) \neq 0$ in \Bbbk .

Proposition

For a semisimple pivotal Hopf algebra H, $\operatorname{Rep}(H)$ is non-degenerate $\Leftrightarrow d_{\operatorname{Rep}(H)} \neq 0$ in $\Bbbk \Leftrightarrow S^2 = id$ and $\dim_{\Bbbk}(H) \neq 0$ in \Bbbk .

For a semisimple and cosemisimple Hopf algebra H over \Bbbk , $d_{\text{Rep}(H)} \neq 0$ in \Bbbk .

Proposition

For a semisimple pivotal Hopf algebra H, $\operatorname{Rep}(H)$ is non-degenerate $\Leftrightarrow d_{\operatorname{Rep}(H)} \neq 0$ in $\Bbbk \Leftrightarrow S^2 = id$ and $\dim_{\Bbbk}(H) \neq 0$ in \Bbbk .

For a semisimple and cosemisimple Hopf algebra H over \Bbbk , $d_{\text{Rep}(H)} \neq 0$ in \Bbbk .

Proposition

Let H be a semisimple and cosemisimple Hopf algebra over \Bbbk . If Gr(H) is commutative, then $d_{Rep(H)}$ and $\dim_{\Bbbk} H$ have the same prime factors.

Theorem

Let H be a semisimple and cosemisimple Hopf algebra over \Bbbk and D(H) the Drinfeld double of H. Then $d_{Rep(D(H))}$ and $\dim_{\Bbbk} H$ have the same prime factors.

Theorem

Let H be a semisimple and cosemisimple Hopf algebra over \Bbbk and D(H) the Drinfeld double of H. Then $d_{Rep(D(H))}$ and $\dim_{\Bbbk} H$ have the same prime factors.

Question: For a semisimple Hopf algebra H, $p \mid \dim_{\mathbb{K}} H \Leftrightarrow p \mid d_{\operatorname{Rep}(H)}$?

• The Frobenius-Schur exponent N of C is the least positive integer N such that $\nu_N(X) = \dim(X)$ for all objects X of C, where $\nu_N(X)$ is the N-th Frobenius-Schur indicator of X (Siu-Hung Ng, et al, Adv Math, 2007).

- The Frobenius-Schur exponent N of C is the least positive integer N such that $\nu_N(X) = \dim(X)$ for all objects X of C, where $\nu_N(X)$ is the N-th Frobenius-Schur indicator of X (Siu-Hung Ng, et al, Adv Math, 2007).
- $N = \operatorname{ord}(\theta)$, the order of the twist θ of $Z(\mathcal{C})$.

- The Frobenius-Schur exponent N of C is the least positive integer N such that $\nu_N(X) = \dim(X)$ for all objects X of C, where $\nu_N(X)$ is the N-th Frobenius-Schur indicator of X (Siu-Hung Ng, et al, Adv Math, 2007).
- $N = \operatorname{ord}(\theta)$, the order of the twist θ of $Z(\mathcal{C})$.
- Let ξ_N be a primitive *N*-th root of unity. Then dim $(X) \in \mathbb{Z}[\xi_N]$ for any object X of C.

- The Frobenius-Schur exponent N of C is the least positive integer N such that $\nu_N(X) = \dim(X)$ for all objects X of C, where $\nu_N(X)$ is the N-th Frobenius-Schur indicator of X (Siu-Hung Ng, et al, Adv Math, 2007).
- $N = \operatorname{ord}(\theta)$, the order of the twist θ of $Z(\mathcal{C})$.
- Let ξ_N be a primitive N-th root of unity. Then dim(X) ∈ Z[ξ_N] for any object X of C.
- For any prime ideal \mathfrak{p} of $\mathbb{Z}[\xi_N]$, $\dim(\mathcal{C}) \in \mathbb{Z}[\xi_N]/\mathfrak{p}$.

Proposition

For any prime ideal \mathfrak{p} of $\mathbb{Z}[\xi_N]$,

Proposition

For any prime ideal \mathfrak{p} of $\mathbb{Z}[\xi_N]$,

• $d_{\mathcal{C}} \neq 0$ in $\mathbb{Z}[\xi_N]/\mathfrak{p} \Leftrightarrow \dim(\mathcal{C}) \neq 0$ in $\mathbb{Z}[\xi_N]/\mathfrak{p}$.

Proposition

For any prime ideal \mathfrak{p} of $\mathbb{Z}[\xi_N]$,

- $d_{\mathcal{C}} \neq 0$ in $\mathbb{Z}[\xi_N]/\mathfrak{p} \Leftrightarrow \dim(\mathcal{C}) \neq 0$ in $\mathbb{Z}[\xi_N]/\mathfrak{p}$.
- **2** The ideals $(d_{\mathcal{C}})$ and $(\dim(\mathcal{C}))$ have the same prime ideal factors in $\mathbb{Z}[\xi_N]$.

Proposition

For any prime ideal \mathfrak{p} of $\mathbb{Z}[\xi_N]$,

- $d_{\mathcal{C}} \neq 0 \text{ in } \mathbb{Z}[\xi_N]/\mathfrak{p} \Leftrightarrow \dim(\mathcal{C}) \neq 0 \text{ in } \mathbb{Z}[\xi_N]/\mathfrak{p}.$
- **2** The ideals $(d_{\mathcal{C}})$ and $(\dim(\mathcal{C}))$ have the same prime ideal factors in $\mathbb{Z}[\xi_N]$.

Cauchy theorem: The ideals (N) and $(\dim(\mathcal{C}))$ have the same prime ideal factors in $\mathbb{Z}[\xi_N]$ (Bruillard, et al, J. Am. Math. Soc, 2016).

Proposition

For any prime ideal \mathfrak{p} of $\mathbb{Z}[\xi_N]$,

- $d_{\mathcal{C}} \neq 0$ in $\mathbb{Z}[\xi_N]/\mathfrak{p} \Leftrightarrow \dim(\mathcal{C}) \neq 0$ in $\mathbb{Z}[\xi_N]/\mathfrak{p}$.
- **2** The ideals $(d_{\mathcal{C}})$ and $(\dim(\mathcal{C}))$ have the same prime ideal factors in $\mathbb{Z}[\xi_N]$.

Cauchy theorem: The ideals (*N*) and $(\dim(\mathcal{C}))$ have the same prime ideal factors in $\mathbb{Z}[\xi_N]$ (Bruillard, et al, J. Am. Math. Soc, 2016). Example: For a group *G* with $|G| \neq 0$ in \mathbb{k} , $\exp(G)$ and |G| have the same prime factors.

Proposition

For any prime ideal \mathfrak{p} of $\mathbb{Z}[\xi_N]$,

- $d_{\mathcal{C}} \neq 0$ in $\mathbb{Z}[\xi_N]/\mathfrak{p} \Leftrightarrow \dim(\mathcal{C}) \neq 0$ in $\mathbb{Z}[\xi_N]/\mathfrak{p}$.
- **2** The ideals $(d_{\mathcal{C}})$ and $(\dim(\mathcal{C}))$ have the same prime ideal factors in $\mathbb{Z}[\xi_N]$.

Cauchy theorem: The ideals (*N*) and $(\dim(\mathcal{C}))$ have the same prime ideal factors in $\mathbb{Z}[\xi_N]$ (Bruillard, et al, J. Am. Math. Soc, 2016). Example: For a group *G* with $|G| \neq 0$ in \mathbb{k} , $\exp(G)$ and |G| have the same prime factors.

Theorem

Let C be a spherical fusion over \mathbb{C} . Then N and d_C have the same prime factors.

Proposition

For any prime ideal \mathfrak{p} of $\mathbb{Z}[\xi_N]$,

- $d_{\mathcal{C}} \neq 0$ in $\mathbb{Z}[\xi_N]/\mathfrak{p} \Leftrightarrow \dim(\mathcal{C}) \neq 0$ in $\mathbb{Z}[\xi_N]/\mathfrak{p}$.
- **2** The ideals $(d_{\mathcal{C}})$ and $(\dim(\mathcal{C}))$ have the same prime ideal factors in $\mathbb{Z}[\xi_N]$.

Cauchy theorem: The ideals (*N*) and $(\dim(\mathcal{C}))$ have the same prime ideal factors in $\mathbb{Z}[\xi_N]$ (Bruillard, et al, J. Am. Math. Soc, 2016). Example: For a group *G* with $|G| \neq 0$ in \mathbb{k} , exp(*G*) and |G| have the same prime factors.

Theorem

Let C be a spherical fusion over \mathbb{C} . Then N and d_C have the same prime factors.

Remark: For a group G with $|G| \neq 0$ in \mathbb{k} , |G|, $\exp(G)$, $d_{\operatorname{Rep}(G)}$ and $m_{\operatorname{Rep}(G)}$ have the same prime factors.

Zhihua Wang (Taizhou College)

August 23, 2021 14 / 18

Let *H* be a f.d. Hopf algebra of finite representation type. Let r(H) be the Green ring of *H* with a pair of dual pases $\{\delta^*_{[X]}, [X] \mid [X] \in ind(H)\}$ with respective to the bilinear form $([X], [Y]) = \dim_{\mathbb{K}} \operatorname{Hom}_{H}(X, Y^*)$. Consider the Casimir operator

$$c: r(H) \rightarrow r(H), c(x) = \sum_{[X] \in \operatorname{ind}(H)} [X] x \delta^*_{[X]}.$$

Then $Imc \cap \mathbb{Z}$ is an ideal of \mathbb{Z} , its non-negative generator is called the Casimir number of Rep(H) (a generalization of semisimple case).

- dim_k(H) divides the casimir number of Rep(H);
- If Hopf algebras H_1 and H_2 are gauge equivalent, then $r(H_1) \cong r(H_2)$ and lead to the same Casimir numbers.

Theorem

Let H be a Hopf algebra of finite representation type over \Bbbk . The Green algebra $r(H) \otimes_{\mathbb{Z}} K$ over a field K is Jacobson semisimple iff the Casimir number of Rep(H) is not zero in K.

Remark: If $p \mid dim_{\mathbb{K}}(H)$, then $r(H) \otimes_{\mathbb{Z}} K$ is not Jacobson semisimple for a field K of charK = p.

Theorem

Let H be a Hopf algebra of finite representation type over \Bbbk . The Green ring r(H) is Jacobson semisimple iff the Casimir number of Rep(H) is not zero.

Non-semisimple case

Let G be a cyclic group of order p and the field \Bbbk has characteristic p. Consider the Hopf algebra $\Bbbk G$:

- The Green ring $r(\Bbbk G) \cong \mathbb{Z}[X]/((X-2)E_{p-1}(X));$
- The Casimir number of $r(\Bbbk G)$ is $2p^2$;
- The Green ring $\mathbb{Z}[X]/((X-2)E_{p-1}(X))$ is semisimple;
- The Green algebra K[X]/((X − 2)E_{p−1}(X)) is semisimple iff charK ≠ 2, p;
- If charK = p, then the Jacobson radical of K[X]/((X 2)E_{p-1}(X)) is generator by X² 4;
- If charK = 2, then the Jacobson radical of $K[X]/((X 2)E_{p-1}(X))$ is generator by

$$\sum_{i=0}^{\left\lfloor\frac{p-1}{2}\right\rfloor} \binom{p-1-i}{i} (-1)^i \overline{X^{\frac{p+1}{2}-i}}.$$

< 4 → <

Thank you!

< 🗗 🕨

э