Cohomologies of Lie coalgebras and applications

Du Lei

Anhui University joint work with Tan Youjun

August 24, 2021

Cohomologies of Lie coalgebras

- Application 1 : Wells maps and Wells sequences
- 4 Application 2: A construction of Lie bialgebras from Lie coalgebras

- Motivations
- Cohomologies of Lie coalgebras
- Application 1 : Wells maps and Wells sequences
- Application 2: A construction of Lie bialgebras from Lie coalgebras

- (1) Lie coalgebras were defined in [1] and the dual PBW theorem [2] were given by Michaelis.
- (2) In the case where both the Lie coalgebra *C* and its Lie comodule *M* are finite dimensional, one may construct a cohomology of *C* with coefficients in *M* just by dualization in [3].
 - For the general case we will construct a subcomplex of the Chevalley-Eilenberg cochain complex of the dual Lie algebra of a Lie coalgebra.
- W. Michaelis, Lie coalgebras, Adv. Math. 38 (1980), 1-54.
- W. Michaelis, The dual Poincaré-Birkhoff-Witt theorem, Adv. Math. 57 (1985), 93-162.
- M. Gerstenhaber and S. D. Shack, Algebras, bialgebras, quantum groups, and algebraic deformations, in "Deformation theory and quantum groups with applications to mathematical physics", *Contemp. Math.* 134 pp. 61-92, Amer. Math. Soc., 1992.

- (3) Wells [1] conctructed a four-term exact sequence, now called Wells (exact) sequences, to obtain an obstruction class for extensibility of a pair of group automorphisms. Wells maps and Wells sequence for group extensions have been studied further in [2][3]. Extensions of Lie algebra automorphisms has been studied in [4], where sequences of Wells type are also constructed to obtain obstruction classes. We will investigate similar problems in extensions of coderivations and automorphisms of Lie coalgebras.
- C. Wells, Automorphisms of group extensions, Trans. AMS 155 (1971) 189-194.
- P. Jin and H.Liu, The Wells exact sequence for the automorphism group. of a group extension, *J. Algebra* 324 (2010) 1219-1228.
- 🐚 I. B. S. Passi, M. Singh and M. K. Yadav, Automorphisms of abelian group extensions, J. Algebra 324 (2010) 820-830.
- V. G. Bardakov and M. Singh, Extensions and automorphisms of Lie algebras, J. Algebra Appl. 16 (2017) 1750162.

- (4) Lie bialgebras defined by Drinfel'd [1][2]. How to construct a Lie bialgebra? Lie bialgebra structures on some infinite-dimensional Lie algebras such as the HeisenbergVirasoro algebra, the Witt algebra, Weyl algebras has been described in [3][4]. We will give a way to construct Lie algebras from any Lie coalgebra by the 0-th differential of the cochain complex with coefficients in $\mathfrak{g}\otimes\mathfrak{g}.$
- Belavin A. A., Drinfel'd V. G. (1982). Solutions of the classical Yang-Baxter equations for simple Lie algebras. Funct. Anal. Appl. 16:159-180.
- Drinfel'd V. G. (1987). Quantum groups, in *Proceedings, International Congress of Mathematicians, August 3-11, 1986, Berkeley, CA* (A.M. Gleason, Ed.), pp. 798-820, Amer. Math. Soc., Providence, RI.
- Michaelis W. (1994). A class of infinite-dimensional Lie bialgebras containing the Virasoro algebra. *Adv. Math.* 107:365-392.
- Liu D., Pei Y., Zhu L. (2012). Lie bialgebra structures on the twisted Heisenberg Virasoro algebra. *J. Algebra* 359:35-48.

The main results of this talk appeared in

- Du L. and Tan Y. A construction of Lie bialgebras from Lie coalgebras via antisymmetric bilinear forms. Commu. Algebra 48(7) (2020): 3170-3183.
- Du L. and Tan Y. Wells sequences for abelian extensions of Lie colagebras. J. Algebra Appl. 20(8) (2021) Paper No. 2150149, pp 41.
- Ou L. and Tan Y. Coderivations, abelian extensions and cohomology of Lie coalgebras. Commu. Algebra 49(10) (2021): 4519-4542.

- Motivations
- Cohomologies of Lie coalgebras
- Application 1 : Wells maps and Wells sequences
- Application 2: A construction of Lie bialgebras from Lie coalgebras

Cohomologies of Lie coalgebras

Definition (Michaelis, 1980; Majid, 1995)

- (1) A **Lie coalgebra** over \mathbb{F} is a pair (C, Δ) of a linear space C and a linear map $\Delta: C \to C \otimes C$ subject to the following two conditions.
 - (i) $\Delta = -\tau \circ \Delta$, and
 - (ii) $(1 + \xi + \xi^2) \circ (1 \otimes \Delta) \circ \Delta = 0$: $C \to C \otimes C \otimes C$.

The map Δ is called the Lie cobracket of C.

(2) A right **Lie comodule** of a Lie coalgebra (C, Δ) is a pair (M, ρ) of a linear space M and a linear map $\rho: M \to M \otimes C$ such that

$$(1 \otimes \Delta) \circ \rho = (\rho \otimes 1) \circ \rho - (1 \otimes \tau) \circ (\rho \otimes 1) \circ \rho : M \to M \otimes C \otimes C.$$

- W. Michaelis, Lie coalgebras, Adv. Math. 38 (1980), 1-54.
- S. Majid, Foundations of Quantum Group Theory, Cambridge University Press. 1995.

Cohomologies of Lie coalgebras

In the sequel we shall use the following identification. Let W be a linear space and $n \ge 1$ a positive integer. The antisymmetrization Alt on $\otimes^n W$ is given by

$$Alt(w_1 \otimes \cdots \otimes w_n) = \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} sgn(\sigma) \psi_{\sigma}(w_1 \otimes \cdots \otimes w_n), \ w_i \in W.$$

Then we can identify $\wedge^n W$ with the image $\mathrm{Alt}(\otimes^n W)$ via

$$Alt(w_1 \otimes \cdots \otimes w_n) = w_1 \wedge \cdots \wedge w_n, \ w_i \in W.$$

Let $\Delta \in \operatorname{Hom}(W, W \otimes W)$. For brevity we set

$$\Delta^{n,k} \triangleq 1 \otimes \cdots \otimes 1 \otimes \Delta \otimes 1 \otimes \cdots \otimes 1 : \otimes^n W \to \otimes^{n+1} W,$$

that is,

$$\Delta^{n,k}(w_1 \otimes \cdots \otimes w_k \otimes \cdots \otimes w_n)$$

= $w_1 \otimes \cdots \otimes w_{k-1} \otimes \Delta(w_k) \otimes w_{k+1} \otimes \cdots \otimes w_n, \ w_i \in W.$

Cohomology of Lie coalgebras

Lemma (Du and Tan, 2021)

Let (M, ρ) be a Lie comodule of a Lie coalgebra (C, Δ) . Define δ_c^n : Hom $(M, \wedge^n C) \to \operatorname{Hom}(M, \wedge^{n+1} C)$ by

$$\delta_c^0(h) = (h \otimes 1) \circ \rho, \quad h \in \operatorname{Hom}(M, \wedge^0 C) = M^*,$$

$$\delta_c^n(h) = \frac{1}{2} \sum_{k=1}^n (-1)^k \operatorname{Alt} \circ \Delta^{n,k} \circ h + (-1)^{n-1} \operatorname{Alt} \circ (h \otimes 1) \circ \rho,$$

$$h \in \operatorname{Hom}(M, \wedge^n C), n > 1.$$
(1)

Then the following diagram commutes for each $n \ge 0$,

$$\cdots \longrightarrow \operatorname{Hom}(M, \wedge^{n}C) \xrightarrow{\delta_{c}^{n}} \operatorname{Hom}(M, \wedge^{n+1}C) \xrightarrow{\delta_{c}^{n+1}} \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\cdots \longrightarrow \operatorname{Hom}(\wedge^{n}C^{*}, M^{*}) \xrightarrow{\delta^{n}} \operatorname{Hom}(\wedge^{n+1}C^{*}, M^{*}) \xrightarrow{\delta^{n+1}} \cdots$$

Cohomology of Lie coalgebras

Theorem (Du and Tan, 2021)

Let (M, ρ) be a Lie comodule of a Lie coalgebra (C, Δ) . Then $(\text{Hom}(M, \wedge^{\bullet}C), \text{Local}(C, \Delta))$. δ_{\circ}^{\bullet}) is a cochain complex with the differentials given by Lemma (1).

Proposition (Du and Tan, 2021)

Let (M, ρ) be a Lie comodule of a Lie coalgebra (C, Δ) . Then $H^1_c(M,C) = \operatorname{coder}(M,C)/\operatorname{incoder}(M,C)$ and $H^2_c(M,C) \cong \mathcal{E}(M,C)$, where the space of equivalent classes of extensions of C by M.

Du L. and Tan Y. Coderivations, abelian extensions and cohomology of Lie coalgebras. Commu. Algebra 49(10) (2021): 4519-4542.

- Motivations
- Cohomologies of Lie coalgebras
- Application 1 : Wells maps and Wells sequences
- Application 2: A construction of Lie bialgebras from Lie coalgebras

Assume that (C, Δ) is a Lie coalgebra and (M, ρ) is a Lie comodule of (C, Δ) . $\mathfrak{g}(C,M)$ is a Lie algebra of all diagonal coderivations of the semi-direct product $C \ltimes M$. We have a linear map $\Phi: \mathfrak{g}(C,M) \to \operatorname{End}(H^2_c(M,C))$ given by

$$(\partial_C, \partial_M) \mapsto \Phi(\partial_C, \partial_M) : [h] \mapsto [\Phi(\partial_C, \partial_M)(h)],$$

where $\Phi(\partial_C, \partial_M)(h)$ is given by

$$\Phi(\partial_C, \partial_M)(h) = (\partial_C \otimes 1) \circ h + (1 \otimes \partial_C) \circ h - h \circ \partial_M, \ h \in \text{Hom}(M, \wedge^2 C).$$

Theorem (Du and Tan. 2021)

The map Φ is a representation of $\mathfrak{g}(C,M)$ on $H^2(M,C)$.

Du L. and Tan Y. Wells sequences for abelian extensions of Lie colagebras. J. Algebra Appl. 20(8) (2021) Paper No. 2150149, pp 41.

Let $\varepsilon:0\to C\stackrel{f}{\to} E\stackrel{g}{\to} M\to 0$ be an extension of C by M. There exists a linear map $\varpi_{\varepsilon}:\ \mathfrak{g}(C,M)\to \mathrm{H}^2_c(C,M)$ given by

$$(\partial_C, \partial_M) \mapsto \varpi_{\varepsilon}(\partial_C, \partial_M) \triangleq \Phi(\partial_C, \partial_M)([h_{\varepsilon}]),$$

where $(\partial_C, \partial_M) \in \mathfrak{g}(C, M)$.

According to [1], the map ϖ_{ε} is called **the Wells map** (with respect to coderivations).

Theorem (Du and Tan, 2021)

Let ε : $0 \to C \xrightarrow{f} E \xrightarrow{g} M \to 0$ be an abelian extension of C by M. Then a pair $(\partial_C, \partial_M) \in \operatorname{End}(C) \times \operatorname{End}(M)$ is coder-extensible with respect to ε if and only if $(\partial_C, \partial_M) \in \mathfrak{g}(C, M)$ and $\varpi_{\varepsilon}(\partial_C, \partial_M) = 0$.

- C. Wells, Automorphisms of group extensions, *Trans. AMS* 155 (1971) 189-194.
- Du L. and Tan Y. Wells sequences for abelian extensions of Lie colagebras. J. Algebra Appl. 20(8) (2021) Paper No. 2150149, pp 41.

Fix an abelian extension ε : $0 \to C \xrightarrow{f} E \xrightarrow{g} M \to 0$ of C by M and $t: M \to C$ is a retraction of f. There is a Lie algebra homomorphism $d_{\varepsilon}: \operatorname{coder}_{C}(E) \to \operatorname{coder}(C) \times \operatorname{End}(M)$ given by $\partial_{E} \mapsto (\overline{\partial_{C}}, \overline{\partial_{M}})$ with

$$\overline{\partial_C}(c) \triangleq t(\partial_E(f(c))), \qquad \overline{\partial_M}(m) \triangleq g(\partial_E(e)),$$

where, $c \in C$, $e \in E$ such that $g(e) = m \in M$ and $\operatorname{coder}_{C}(E) = \{ \partial_{E} \in \operatorname{coder}(E) \mid \partial_{E}(f(C)) \subseteq f(C) \}.$

Theorem (Du and Tan, 2021)

Assume that $\varepsilon: 0 \to C \xrightarrow{f} E \xrightarrow{g} M \to 0$ is an abelian extension of C by M. Then there exists an exact sequence

$$0 \longrightarrow Z_c^1(M,C) \longrightarrow \operatorname{coder}_C(E) \xrightarrow{\operatorname{d}_{\varepsilon}} \mathfrak{g}(C,M) \xrightarrow{\varpi_{\varepsilon}} \operatorname{H}_c^2(M,C),$$

which is called the Wells sequence for ε with respect to coderivations.

Du L., Tan Y. Wells sequences for abelian extensions of Lie colagebras. J. Algebra Appl. 20(8) (2021) Paper No. 2150149, pp 41. 4 D > 4 E > 990

Similarly, for a Lie comodule (M, ρ) is of Lie coalgebra (C, Δ) . $\mathfrak{G}(C, M)$ that consists of diagonal automorphisms of $Aut_{co}(C \ltimes M)$ is a subgroup of $\operatorname{Aut}_{co}(C \ltimes M)$. We have a linear map $\Psi \colon \mathfrak{G}(C,M) \to \operatorname{End}(\operatorname{H}^2_c(C,M))$ given by

$$(u, v) \mapsto \Psi(u, v) : [\alpha] \mapsto [\Psi(u, v)(\alpha)],$$

where $\Psi(u,v)$ is given by

$$\Psi(u,v)(\alpha) = (u \otimes u) \circ \alpha \circ v^{-1}, \ \alpha \in \operatorname{Hom}(M, \wedge^2 C).$$

Theorem (Du and Tan. 2021)

The map Ψ is a representation of the group $\mathfrak{G}(C,M)$ on $H^2_c(M,C)$.

Du L. and Tan Y. Wells sequences for abelian extensions of Lie colagebras. J. Algebra Appl. 20(8) (2021) Paper No. 2150149, pp 41.

Let $\varepsilon: 0 \to C \xrightarrow{f} E \xrightarrow{g} M \to 0$ be an extension of C by M. There exists a linear map $\widehat{\varpi}_{\varepsilon}: \mathfrak{G}(C,M) \to \mathrm{H}^2_c(M,C)$ given by

$$(u,v) \mapsto \widehat{\varpi}_{\varepsilon}(u,v) \triangleq [\Psi(u,v)(\mathsf{h}_{\varepsilon})] - [\mathsf{h}_{\varepsilon}].$$

The map $\widehat{\varpi}_{\varepsilon}$ is called **the Wells map** (with respect to automorphisms).

Theorem (Du and Tan, 2021)

Let $\varepsilon: 0 \to C \xrightarrow{f} E \xrightarrow{g} M \to 0$ be an abelian extension of C by M. Then a pair $(u,v) \in \operatorname{Aut}(C) \times \operatorname{Aut}(M)$ is aut-extensible with respect to ε if and only if $(u,v) \in \mathfrak{G}(C,M)$ and $\widehat{\varpi}_{\varepsilon}(u,v) = 0$.

Du L. and Tan Y. Wells sequences for abelian extensions of Lie colagebras. J. Algebra Appl. 20(8) (2021) Paper No. 2150149, pp 41.

Fix an abelian extension $\varepsilon: 0 \to C \xrightarrow{f} E \xrightarrow{g} M \to 0$ of C by M and $t: M \to C$ is a retraction of f. There is a Lie algebra homomorphism $a_{\varepsilon}: Aut_{C}(E) \to Aut_{co}(C) \times Aut(M)$ with

$$\overline{\gamma_C}(c) = t(\gamma(f(c))), \quad \overline{\gamma_M}(m) = g(\gamma(e)),$$

where, $c \in C$, $e \in E$ such that $g(e) = m \in M$ and $\operatorname{Aut}_{C}(E) = \{ \gamma \in \operatorname{Aut}_{co}(E) \mid \gamma(f(C)) = f(C) \}.$

Theorem (Du and Tan, 2021)

Assume that $\varepsilon: 0 \to C \xrightarrow{f} E \xrightarrow{g} M \to 0$ is an abelian extension of C by M. Then there exists an exact sequence

$$0 \longrightarrow Z^1_c(M,C) \longrightarrow \operatorname{Aut}_C(E) \stackrel{\mathfrak{a}_\varepsilon}{\longrightarrow} \mathfrak{G}(C,M) \stackrel{\widehat{\varpi}_\varepsilon}{\longrightarrow} \operatorname{H}^2_c(M,C).$$

Du L., Tan Y. Wells sequences for abelian extensions of Lie colagebras. J. Algebra Appl. 20(8) (2021) Paper No. 2150149, pp 41.

4 - 1 + 1 = 1 + 1 9 9 C

- Motivations
- Cohomologies of Lie coalgebras
- Application 1 : Wells maps and Wells sequences
- 4 Application 2: A construction of Lie bialgebras from Lie coalgebras

Application 2: A construction of Lie bialgebras from Lie coalgebras

Let (\mathfrak{g},Δ) be a Lie coalgebra and $(\mathfrak{g}\otimes\mathfrak{g},\rho_{\mathrm{ad}})$ is a Lie comodule of \mathfrak{g} . $\delta^0_c: (\mathfrak{g}\otimes\mathfrak{g})^* \to \mathrm{Hom}(\mathfrak{g}\otimes\mathfrak{g},\ \mathfrak{g})$ is the 0-th differential of the cochain complex with coefficients in $\mathfrak{g}\otimes\mathfrak{g}$.

For any $\gamma \in (\mathfrak{g} \otimes \mathfrak{g})^*$ we introduce the following bilinear operation $[\cdot,\cdot]_{\gamma}$: $\mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g}$ given by

$$\begin{split} [x,y]_{\gamma} &= \delta_c^0(\gamma)(x \otimes y) = (\gamma \otimes 1)(\rho_{\mathrm{ad}}(x \otimes y)) \\ &= \sum \gamma(x \otimes y_{(1)})y_{(2)} - \gamma(x_{(2)} \otimes y)x_{(1)}, \ x,y \in \mathfrak{G}, \end{split}$$

where
$$\Delta(x) = \sum x_{(1)} \otimes x_{(2)}, \Delta(y) = \sum y_{(1)} \otimes y_{(2)}.$$

Application 2: A construction of Lie bialgebras from Lie coalgebras

Let $\mathcal{A}^2(\mathfrak{g}) \subset (\mathfrak{g} \otimes \mathfrak{g})^*$ be the space of antisymmetric bilinear functions on \mathfrak{g} . We have the following

Lemma (Du and Tan. 2020)

Let (\mathfrak{g}, Δ) be a Lie coalgebra and $\gamma \in \mathcal{A}^2(\mathfrak{g})$. Then for any $x, y \in \mathfrak{g}$ it holds that

$$\begin{split} \Delta([x,y]_{\gamma}) &= \sum \left([x,y_{(1)}]_{\gamma} \otimes y_{(2)} + y_{(1)} \otimes [x,y_{(2)}]_{\gamma} \right. \\ &- [y,x_{(1)}]_{\gamma} \otimes x_{(2)} - x_{(1)} \otimes [y,x_{(2)}]_{\gamma} \right) \\ &= & \operatorname{ad}_{x}(\Delta(y)) - \operatorname{ad}_{y}(\Delta(x)) \end{split}$$

Du L., Tan Y. A construction of Lie bialgebras from Lie coalgebras via antisymmetric bilinear forms. Commu. Algebra 48(7) (2020): 3170-3183.

Application 2:A construction of Lie bialgebras from Lie coalgebras

Let (\mathfrak{g}, Δ) be a Lie coalgebra and $\gamma \in (\mathfrak{g} \otimes \mathfrak{g})^*$. For brevity we introduce $D_{\gamma} \in (\mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{g})^*$ given by

$$D_{\gamma} = (\gamma \otimes \gamma) \circ (1 \otimes \tau \otimes 1) \circ (\Delta \otimes 1 \otimes 1 - 1 \otimes \Delta \otimes 1 + 1 \otimes 1 \otimes \Delta)$$
$$= (\gamma \otimes \gamma) \circ (1 \otimes \tau \otimes 1) \circ (\Delta \otimes 1 \otimes 1 + 1 \otimes \tau \circ \Delta \otimes 1 + 1 \otimes 1 \otimes \Delta).$$

Note that the condition $D_{\gamma} = 0$ has been used in the definition of dual quasitriangular Lie bialgebras (see [1, (8.12)]).

Majid S. (1995). Foundations of Quantum Group Theory. Cambridge University Press, Cambridge.

Application 2: A construction of Lie bialgebras from Lie coalgebras

Now we get the following

Theorem (Du and Tan, 2020)

Let (\mathfrak{g}, Δ) be a Lie coalgebra and $\gamma \in \mathcal{A}^2(\mathfrak{g})$. Then $(\mathfrak{g}, [\cdot, \cdot]_{\gamma})$ is a Lie algebra if and only if γ satisfies

$$(D_{\gamma} \otimes 1) \circ (1 \otimes 1 \otimes \Delta) \circ (1 + \xi + \xi^{2}) = 0: \quad \mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g}. \tag{2}$$

In this case, $(\mathfrak{g}, [\cdot, \cdot]_{\gamma}, \Delta)$ is a Lie bialgebra.

Du L. and Tan Y. A construction of Lie bialgebras from Lie coalgebras via antisymmetric bilinear forms. Commu. Algebra 48(7) (2020): 3170-3183.

Application 2: A construction of Lie bialgebras from Lie coalgebras

For any Lie coalgebra (\mathfrak{g}, Δ) we set

$$Lieb(\mathfrak{g}) := \{ \gamma \in \mathcal{A}^2(\mathfrak{g}) \mid (D_{\gamma} \otimes 1) \circ (1 \otimes 1 \otimes \Delta) \circ (1 + \xi + \xi^2) = 0 \},$$

$$Lieb_0(\mathfrak{g}) := \{ \gamma \in \mathcal{A}^2(\mathfrak{g}) \mid D_{\gamma} = 0 \}.$$

The above theorem means that $\gamma \in \mathrm{Lieb}(\mathfrak{g})$ if and only if $(\mathfrak{g}, [\cdot, \cdot]_{\gamma}, \Delta)$ is a Lie bialgebra.

Application 2: A construction of Lie bialgebras from Lie coalgebras

We consider finite-dimensional Lie coalgebras as following

Corollary (Du and Tan, 2020)

Assume that (\mathfrak{g}, Δ) is a finite-dimensional Lie coalgebra and $\gamma \in \text{Lieb}(\mathfrak{g})$. Then the dual \mathfrak{g}^* of $(\mathfrak{g}, [\cdot, \cdot]_{\gamma}, \Delta)$ is a coboundary Lie bialgebra. Assume further that $\gamma \in \text{Lieb}_0(\mathfrak{g})$. Then \mathfrak{g}^* is a triangular Lie bialgebra.

Du L. and Tan Y. A construction of Lie bialgebras from Lie coalgebras via antisymmetric bilinear forms. Commu. Algebra 48(7) (2020): 3170-3183.

Application 2: A construction of Lie bialgebras from Lie coalgebras

Any $\gamma \in \mathcal{A}^2(\mathfrak{g}_{3,i}) = \mathfrak{g}_{3,i}^* \wedge \mathfrak{g}_{3,i}^*$ has the form $\gamma = k_1(e_1^* \wedge e_2^*) + k_2(e_1^* \wedge e_3^*) + k_3(e_2^* \wedge e_3^*)$ for some $k_i \in \mathbb{C}$, i = 1, 2, 3. We identify γ with the triple $(k_1, k_2, k_3) \in \mathbb{C}^3$ for brevity. We list $\mathrm{Lieb}(\mathfrak{g}_{3,i})$ and $\mathrm{Lieb}_0(\mathfrak{g}_{3,i})$ for each $\mathfrak{g}_{3,i}$ as follows.

Example

- (0) $Lieb_0(\mathfrak{g}_{3,0}) = Lieb(\mathfrak{g}_{3,0}) = \mathbb{C}^3$.
- (1) $\operatorname{Lieb}_0(\mathfrak{g}_{3,1}) = \operatorname{Lieb}(\mathfrak{g}_{3,1}) = \{ \gamma = (k_1, k_2, k_3) \in \mathbb{C}^3 \mid k_1 k_3 = 0 \}.$
- (2) $\operatorname{Lieb}_0(\mathfrak{g}_{3,2}) = \operatorname{Lieb}(\mathfrak{g}_{3,2}) = \{ \gamma = (k_1, k_2, k_3) \in \mathbb{C}^3 \mid k_2 = 0 \}.$
- (3) $\text{Lieb}_0(\mathfrak{g}_{3,3,\alpha}) = \{ \gamma = (k_1, k_2, k_3) \in \mathbb{C}^3 \mid (1 \alpha)k_2k_3 = 0 \}, \\ \text{Lieb}(\mathfrak{g}_{3,3,\alpha}) = \{ \gamma = (k_1, k_2, k_3) \in \mathbb{C}^3 \mid (1 \alpha^2)k_2k_3 = 0 \}.$
- (4) $\operatorname{Lieb}_0(\mathfrak{g}_{3,4}) = \{ \gamma = (k_1, k_2, k_3) \in \mathbb{C}^3 \mid k_1 = 0 \}, \operatorname{Lieb}(\mathfrak{g}_{3,4}) = \mathbb{C}^3.$
- (5) $\operatorname{Lieb}_0(\mathfrak{g}_{3,5}) = \{ \gamma = (k_1, k_2, k_3) \in \mathbb{C}^3 \mid k_1^2 + k_2^2 + k_3^2 = 0 \}, \ \operatorname{Lieb}(\mathfrak{g}_{3,5}) = \mathbb{C}^3.$

Thank You!

