Kangqiao Li

Department of Mathematics, Nanjing University

Southwest University, Chongqing. August, 2021

Outline

1 Abstract and related works

2 Basic concepts

- Hopf algebras
- Pointed Hopf algebras
- 3 Matric generalizations (for grouplike and primitive elements)
 - Multiplicative and primitive matrices
 - Grouplike elements v.s. multiplicative matrices
 - Dual Chevalley property

4 Results

- Finiteness of the exponent
- Primitive elements v.s. primitive matrices
- An annihilation polynomial for the antipode
- Link-indecomposable components and their products

▲□▶ ▲@▶ ▲ 臣▶ ▲ 臣▶ = 臣 = のへで

5 References

Abstract and related works

Abstract

There were a number of classic results on pointed Hopf algebras. Some of them might be generalized to **non-pointed cases**, with the methods of so-called multiplicative and primitive matrices. The aim of this talk is to introduce these methods and results.

Specifically, for a non-pointed Hopf algebra with the (dual Chevalley property):

1) The coradical filtration is initially determined by matrices mentioned above;

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 2) There is an annihilation polynomial for the antipode;
- 3) We show a formula on the products between the link-indecomposable components.

Abstract and related works

Related works

Some results are joint works with Prof. Shenglin Zhu and Prof. Gongxiang Liu.

The results introduced in this talk are selected from the following articles:

- Kangqiao Li, Shenglin Zhu, On the exponent of finite-dimensional non-cosemisimple Hopf algebras, Comm. Algebra 47 (2019), no. 11, 4476-4495.
- [2] Kangqiao Li, Gongxiang Liu, *On the antipode of Hopf algebras with the dual Chevalley property*, J. Pure Appl. Algebra 226 (2022), no. 3, 106871.
- [3] Kangqiao Li, *Note on invariance and finiteness for the exponent of Hopf algebras*, Comm. Algebra, published online.
- [4] Kangqiao Li, *The link-indecomposable components of Hopf algebras and their products*, preprint (in revision).

All these articles could be found on **arXiv**.

Basic concepts

Hopf algebras

Coalgebras and Hopf algebras

- In this talk, all vector spaces, coalgebras, and Hopf algebras are assumed to be over a field k.
- Coalgebra. A coalgebra *H* is a triple (H, Δ, ε) , where *H* is a k-vector space, and $\Delta : C \to C \otimes C$, $\varepsilon : C \to k$ are linear maps, such that following diagrams both commute:

$$\begin{array}{c|c} H & & \Delta & & H \otimes H \\ & & \downarrow & & \downarrow & \downarrow \\ & & \downarrow & \downarrow & \downarrow \\ & H \otimes H & & & H \otimes H \\ & & & & H \otimes H \otimes H \end{array} \xrightarrow{\cong} H \otimes H \otimes H \xrightarrow{\cong} H \otimes \mathbb{k}$$

 Δ and ε are called the comultiplication and the counit, respectively.

- **Hopf algebra.** Suppose that (H, m, u) is an k-algebra, and (H, Δ, ε) is a k-coalgebra. *H* is said to be a Hopf algebra over k, if
 - (1) Δ and ε are both algebra maps (*H* is called a **bialgebra**);
 - (2) There is a linear map $S: H \to H$, such that

$$m \circ (S \otimes \mathrm{id}) \circ \Delta = u \circ \varepsilon = m \circ (\mathrm{id} \otimes S) \circ \Delta$$

hold on *H*. *S* is called the antipode.

Basic concepts

Pointed Hopf algebras

Pointed coalgebras and Hopf algebras

- **Grouplike and primitive element.** Let *H* be a coalgebra.
 - (1) $g \in H$ is said to be grouplike, if

$$\Delta(g) = g \otimes g, \ \varepsilon(g) = 1.$$

The set of all the grouplike elements of *H* is denoted by G(H).

(2) Suppose $g, h \in H$ are grouplike. $x \in H$ is said to be (g, h)-primitive, if

$$\Delta(x) = g \otimes x + x \otimes h, \ (\varepsilon(x) = 0).$$

The set of all the (g, h)-primitive elements of H is denoted by $P_{g,h}(H)$.

- Fact 1. Each 1-dimensional (simple) coalgebra is spanned by a <u>unique</u> grouplike element.
- Fact 2. Suppose H is a Hopf algebra. Then G(H) is a group, which would be finite if H is moreover finite-dimensional.
- Pointed coalgebra & Hopf algebra. A coalgebra (or Hopf algebra) H is said to be pointed, if its coradical is exactly $\Bbbk G(H)$.

- Basic concepts
 - Pointed Hopf algebras

Outline

- 1 Abstract and related works
- 2 Basic concepts
 - Hopf algebras
 - Pointed Hopf algebras
- 3 Matric generalizations (for grouplike and primitive elements)
 - Multiplicative and primitive matrices
 - Grouplike elements v.s. multiplicative matrices
 - Dual Chevalley property

4 Results

- Finiteness of the exponent
- Primitive elements v.s. primitive matrices
- An annihilation polynomial for the antipode
- Link-indecomposable components and their products

5 References

- Matric generalizations (for grouplike and primitive elements)
 - Multiplicative and primitive matrices

Multiplicative matrices over a coalgebra H

Multiplicative matrix. (Manin 1988)

A matrix $\mathcal{G} = (g_{ij})_{n \times n}$ over *H* is said to be multiplicative, if for each $1 \le i, j \le n$,

$$\Delta(g_{ij}) = \sum_{k=1} g_{ik} \otimes g_{kj}, \quad arepsilon(g_{ij}) = \delta_{ij}.$$

Basic fact. Suppose *C* is a simple coalgebra over an algebraically closed field k. Then *C* has a linear basis {*c_{ij}* | 1 ≤ *i*, *j* ≤ *r*} such that (*c_{ij}*)_{*r*×*r*} is a multiplicative matrix (which is called a basic multiplicative matrix of *C*).

- Matric generalizations (for grouplike and primitive elements)
 - Multiplicative and primitive matrices

Multiplicative matrices over a coalgebra H

Multiplicative matrix. (Manin 1988)

A matrix $\mathcal{G} = (g_{ij})_{n \times n}$ over *H* is said to be multiplicative, if for each $1 \le i, j \le n$,

$$\Delta(g_{ij}) = \sum_{k=1}^{n} g_{ik} \otimes g_{kj}, \quad \varepsilon(g_{ij}) = \delta_{ij}.$$

- **Basic fact.** Suppose *C* is a simple coalgebra over an algebraically closed field \Bbbk . Then *C* has a linear basis $\{c_{ij} \mid 1 \le i, j \le r\}$ such that $(c_{ij})_{r \times r}$ is a multiplicative matrix (which is called a basic multiplicative matrix of *C*).
- Primitive matrix. Let $C_{r \times r}$ and $D_{s \times s}$ be basic multiplicative matrices over *H*. A matrix $\mathcal{X} = (x_{ij})_{r \times s}$ over *H* is said to be $(\mathcal{C}, \mathcal{D})$ -primitive, if for each $1 \le i \le r$ and $1 \le j \le s$,

$$\Delta(x_{ij}) = \sum_{k=1}^r c_{ik} \otimes x_{kj} + \sum_{l=1}^s x_{il} \otimes d_{lj}, \quad (\varepsilon(x_{ij}) = 0).$$

Remark. \mathcal{X} is $(\mathcal{C}, \mathcal{D})$ -primitive, if and only if $\begin{pmatrix} \mathcal{C} & \mathcal{X} \\ 0 & \mathcal{D} \end{pmatrix}$ is multiplicative.

Matric generalizations (for grouplike and primitive elements)

Grouplike elements v.s. multiplicative matrices

Grouplike elements v.s. multiplicative matrices

• The definition of a multiplicative matrix $\mathcal{G} = (g_{ij})_{n \times n}$ might be written as

$$\Delta(\mathcal{G}) = \mathcal{G} \otimes \mathcal{G} \quad \text{and} \quad \varepsilon(\mathcal{G}) = I_n,$$

- コン・4回シュービン・4回シューレー

where $\mathcal{G} \otimes \mathcal{G} = (\sum_{k=1}^{n} g_{ik} \otimes g_{kj})_{n \times n}$ is a matrix over $H \otimes H$.

• Observation. $\widetilde{\otimes}$ is a "<u>associative</u> binary operation" on matrices over vector spaces.

Matric generalizations (for grouplike and primitive elements)

Grouplike elements v.s. multiplicative matrices

Grouplike elements v.s. multiplicative matrices

• The definition of a multiplicative matrix $\mathcal{G} = (g_{ij})_{n \times n}$ might be written as

$$\Delta(\mathcal{G}) = \mathcal{G} \mathrel{\widetilde{\otimes}} \mathcal{G} \quad \text{and} \quad \varepsilon(\mathcal{G}) = I_n,$$

where $\mathcal{G} \otimes \mathcal{G} = (\sum_{k=1}^{n} g_{ik} \otimes g_{kj})_{n \times n}$ is a matrix over $H \otimes H$.

- Observation. $\widetilde{\otimes}$ is a "<u>associative</u> binary operation" on matrices over vector spaces.
- Basic case: Span simple coalgebras. When $\overline{k} = k$, any simple coalgebra *C* has a basic multiplicative matrix *C*. The uniqueness could be described as follows:

Fact ([4, Lemma 2.4])

Let *C* be a simple coalgebra with a basic multiplicative matrix C. Then the followings are equivalent:

(1) \mathcal{D} is also a basic multiplicative matrix of *C*;

(2) $\mathcal{D} \sim \mathcal{C}$, which means that $\mathcal{D} = L\mathcal{C}L^{-1}$ for some matrix *L* over \Bbbk .

A "non-basic case" of this fact is described in [4, Proposition 2.6].

Matric generalizations (for grouplike and primitive elements)

Grouplike elements v.s. multiplicative matrices

Grouplike elements v.s. multiplicative matrices

Suppose *H* is a bialgebra. Recall that G(H) is a monoid with the unit element 1.

■ The monoid of multiplicative matrices. The set of all multiplicative matrices (over *H*) is closed under the Kronecker product ⊙.

Fact ([4, Lemma 2.7])

Suppose $\mathcal{A} = (a_{ij})_{r \times r}$ and $B = (b_{ij})_{s \times s}$ be multiplicative matrices over a bialgebra *H*. Then the following $rs \times rs$ matrix is multiplicative:

$$\mathcal{A} \odot \mathcal{B} := \begin{pmatrix} a_{11}\mathcal{B} & \cdots & a_{1n}\mathcal{B} \\ \vdots & \ddots & \vdots \\ a_{n1}\mathcal{B} & \cdots & a_{nn}\mathcal{B} \end{pmatrix}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Matric generalizations (for grouplike and primitive elements)

Grouplike elements v.s. multiplicative matrices

Grouplike elements v.s. multiplicative matrices

Suppose *H* is a bialgebra. Recall that G(H) is a monoid with the unit element 1.

■ The monoid of multiplicative matrices. The set of all multiplicative matrices (over *H*) is closed under the Kronecker product ⊙.

Fact ([4, Lemma 2.7])

Suppose $\mathcal{A} = (a_{ij})_{r \times r}$ and $B = (b_{ij})_{s \times s}$ be multiplicative matrices over a bialgebra *H*. Then the following $rs \times rs$ matrix is multiplicative:

$$\mathcal{A} \odot \mathcal{B} := \begin{pmatrix} a_{11}\mathcal{B} & \cdots & a_{1n}\mathcal{B} \\ \vdots & \ddots & \vdots \\ a_{n1}\mathcal{B} & \cdots & a_{nn}\mathcal{B} \end{pmatrix}$$

Suppose *H* is moreover a Hopf algebra with antipode *S*.

Fact (Inverse). For any multiplicative matrix \mathcal{G} over H, the matrix $\underline{S(\mathcal{G})^{T}}$ is also multiplicative, and $S(\mathcal{G})\mathcal{G} = \mathcal{G}S(\mathcal{G}) = I$ holds over H.

Matric generalizations (for grouplike and primitive elements)

Grouplike elements v.s. multiplicative matrices

Grouplike elements v.s. multiplicative matrices

Suppose *H* is a bialgebra. Recall that G(H) is a monoid with the unit element 1.

• The monoid of multiplicative matrices. The set of all multiplicative matrices (over H) is closed under the Kronecker product \odot .

Fact ([4, Lemma 2.7])

Suppose $\mathcal{A} = (a_{ij})_{r \times r}$ and $B = (b_{ij})_{s \times s}$ be multiplicative matrices over a bialgebra *H*. Then the following $rs \times rs$ matrix is multiplicative:

$$\mathcal{A} \odot \mathcal{B} := \begin{pmatrix} a_{11}\mathcal{B} & \cdots & a_{1n}\mathcal{B} \\ \vdots & \ddots & \vdots \\ a_{n1}\mathcal{B} & \cdots & a_{nn}\mathcal{B} \end{pmatrix}$$

Suppose *H* is moreover a Hopf algebra with antipode *S*.

Fact (Inverse). For any multiplicative matrix \mathcal{G} over H, the matrix $\underline{S(\mathcal{G})^{\mathrm{T}}}$ is also multiplicative, and $S(\mathcal{G})\mathcal{G} = \mathcal{G}S(\mathcal{G}) = I$ holds over H.

What if multiplicative matrices are considered to be basic?

- Matric generalizations (for grouplike and primitive elements)
 - └─ Dual Chevalley property

Dual Chevalley property

A Hopf algebra H is said to have the dual Chevalley property, if its coradial H_0 is a Hopf subalgebra.

• **Obvious fact.** Pointed Hopf algebras have the dual Chevalley property.

Matric generalizations (for grouplike and primitive elements)

L Dual Chevalley property

Dual Chevalley property

A Hopf algebra H is said to have the dual Chevalley property, if its coradial H_0 is a Hopf subalgebra.

- **Obvious fact.** Pointed Hopf algebras have the dual Chevalley property.
- Let *H* be a Hopf algebra with the dual Chevalley property.

A corollary of [4, Lemma 2.7(2) and Proposition 2.6(2)]

Suppose C and D are <u>basic</u> multiplicative matrices over H. Then

 $\mathcal{C} \odot \mathcal{D} \sim \operatorname{diag}(\mathcal{E}_1, \mathcal{E}_2, \cdots, \mathcal{E}_t),$

where $\mathcal{E}_1, \mathcal{E}_2, \cdots, \mathcal{E}_t$ are basic multiplicative matrices.

Matric generalizations (for grouplike and primitive elements)

L Dual Chevalley property

Dual Chevalley property

A Hopf algebra H is said to have the dual Chevalley property, if its coradial H_0 is a Hopf subalgebra.

- **Obvious fact.** Pointed Hopf algebras have the dual Chevalley property.
- Let *H* be a Hopf algebra with the dual Chevalley property.

A corollary of [4, Lemma 2.7(2) and Proposition 2.6(2)]

Suppose C and D are <u>basic</u> multiplicative matrices over H. Then

 $\mathcal{C} \odot \mathcal{D} \sim \operatorname{diag}(\mathcal{E}_1, \mathcal{E}_2, \cdots, \mathcal{E}_t),$

where $\mathcal{E}_1, \mathcal{E}_2, \cdots, \mathcal{E}_t$ are basic multiplicative matrices.

This is essentially the same thing as the product of characters for semisimple Hopf algebras.

Matric generalizations (for grouplike and primitive elements)

└─ Dual Chevalley property

Conclusion: How to generalize pointed Hopf algebras

• We conclude the facts as follows:

Pointed Hopf algebras	Non-pointed Hopf algebras	Sufficient condition
Simple subcoalgebras	Simple subcoalgebras are	The base field k is al-
are spanned by grouplike	spanned by entries of basic	gebraically closed.
elements.	multiplicative matrices.	
Grouplike elements are	Kronecker products of ba-	The dual Chevalley
closed under the multi-	sic multiplicative matrices are	property.
plication.	similar to block diagonal ma-	
	trices with entries as basic	
	multiplicative ones.	
Grouplike elements has	Basic multiplicative matrices	The antipode S is bi-
inverses.	has inverses as the transpose of	jective.
	basic ones.	
Grouplike elements are	Basic multiplicative matrices	Involutory, i.e. $S^2 =$
pairwise (via inverses).	are pairwise.	id.

• Note that the dual Chevalley property implies that *S* is bijective.

Matric generalizations (for grouplike and primitive elements)

└─ Dual Chevalley property

Conclusion: How to generalize pointed Hopf algebras

• We conclude the facts as follows:

Pointed Hopf algebras	Non-pointed Hopf algebras	Sufficient condition
Simple subcoalgebra kg	Simple subcoalgebra C is	$\overline{\Bbbk} = \Bbbk.$
is spanned by $g \in G(H)$	spanned by basic $\mathcal C$	
$\forall g,h \in G(H), gh \in$	\forall basic $\mathcal{C}, \mathcal{D}, \ \mathcal{C} \odot \mathcal{D} \sim$	$H_0^2 \subseteq H_0.$
G(H).	diag $(\mathcal{E}_1, \mathcal{E}_2, \cdots, \mathcal{E}_t)$.	
$\forall g \in G(H), g^{-1} \in$	\forall basic $\mathcal{C}, S(\mathcal{C})^{\mathrm{T}}$ is basic.	S is bijective.
G(H).		
$g \leftrightarrow g^{-1}$ in $G(H)$, and	$\mathcal{C} \leftrightarrow S(\mathcal{C})^{\mathrm{T}}$, and $S(S(\mathcal{C})^{\mathrm{T}})^{\mathrm{T}} =$	$S^2 = \mathrm{id}.$
$(g^{-1})^{-1} = g.$	С.	

- Matric generalizations (for grouplike and primitive elements)
 - L Dual Chevalley property

Outline

- 1 Abstract and related works
- 2 Basic concepts
 - Hopf algebras
 - Pointed Hopf algebras
- 3 Matric generalizations (for grouplike and primitive elements)
 - Multiplicative and primitive matrices
 - Grouplike elements v.s. multiplicative matrices
 - Dual Chevalley property

4 Results

- Finiteness of the exponent
- Primitive elements v.s. primitive matrices
- An annihilation polynomial for the antipode
- Link-indecomposable components and their products

5 References

Some properties of non-pointed Hopf algebras generalized from pointed ones

Results

Finiteness of the exponent

Two notions of exponent and finiteness

• There are two notions of the exponent for Hopf algebras.

Definitions (Kashina 1999; Etingof and Gelaki, 1999)

Let H be a Hopf algebra with bijective antipode S.

$$\begin{split} \exp_{0}(H) &:= \{ n \ge 1 \mid \forall h \in H, \ \sum h_{(1)}h_{(2)}\cdots h_{(n)} = \varepsilon(h)1 \}; \\ \exp(H) &:= \{ n \ge 1 \mid \forall h \in H, \ \sum h_{(1)}S^{-2}(h_{(2)})\cdots S^{-2n+2}(h_{(n)}) = \varepsilon(h)1 \} \end{split}$$

- Known results. (Etingof and Gelaki, 1999)
 - (1) When *H* is semisimple and cosemisimple, $\exp(H) = \exp_0(H) | \dim(H)^3$;

- (2) When *H* is finite-dimensional in positive characteristic, $\exp(H) < \infty$.
- Question. (Etingof and Gelaki, 2002)
 Is exp(H) infinite when H is non-semisimple in characteristic 0?

Results

Finiteness of the exponent

Two notions of exponent and finiteness

• Our answers:

Proposition ([3, Proposition 4.1])

Let H be a finite-dimensional Hopf algebra in positive characteristic. Then $\exp_0(H)<\infty.$

• Suppose that *H* is a non-cosemisimple Hopf algebra with the dual Chevalley property.

Theorem ([1, Theorem 4.1], [3, Proposition 4.2 and Theorem 4.11])

- (1) If char k = 0, then $\exp_0(H) = \infty$, and meanwhile $\exp(H) = \infty$;
- (2) If *H* is finite-dimensional in characteristic p > 0, then

$$\exp_0(H) | Np^M$$
 and $\exp(H) | N'p^M$,

where $N := \exp_0(H_0)$, $N := \operatorname{lcm}(\exp_0(H_0), \exp(H_0))$, and p^M is not less than the Loewy length of H (i.e. $H_{p^M-1} = H$).

Results

Primitive elements v.s. primitive matrices

Primitive elements v.s. primitive matrices (1)

■ Denote the set of all the simple subcoalgebras of a coalgebra *H* by *S*. Let $\{e_C\}_{C \in S} \subseteq H^*$ be a family of coradical orthonormal idempotents, satisfying

$$e_C \mid_D = \delta_{C,D} \varepsilon_D, \quad e_C e_D = \delta_{C,D} e_C \quad (\forall C, D \in S), \quad \text{and} \quad \sum_{C \in S} e_C = \varepsilon.$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Remark. The existence of such $\{e_C\}_{C \in S}$ is affirmed by Radford in 1978.

• We use notations:
$${}^{C}h^{D} := e_{D} \rightharpoonup h \leftarrow e_{C} = \sum \langle e_{C}, h_{(1)} \rangle h_{(2)} \langle e_{D}, h_{(3)} \rangle$$
, etc.

Results

Primitive elements v.s. primitive matrices

Primitive elements v.s. primitive matrices (1)

Denote the set of all the simple subcoalgebras of a coalgebra H by S. Let $\{e_C\}_{C \in S} \subseteq H^*$ be a family of coradical orthonormal idempotents, satisfying

$$e_C \mid_D = \delta_{C,D} \varepsilon_D, \quad e_C e_D = \delta_{C,D} e_C \quad (\forall C, D \in S), \quad \text{and} \quad \sum_{C \in S} e_C = \varepsilon.$$

- **Remark.** The existence of such $\{e_C\}_{C \in S}$ is affirmed by Radford in 1978.
- We use notations: ${}^{C}h^{D} := e_{D} \rightharpoonup h \leftarrow e_{C} = \sum \langle e_{C}, h_{(1)} \rangle h_{(2)} \langle e_{D}, h_{(3)} \rangle$, etc.

Proposition (Taft and Wilson, 1974)

Let *H* be a pointed coalgebra. Then for any $g, h \in G(H)$: (1) $\underline{P}_{g,h}(H) = \underline{\Bbbk}(g-h) \oplus {}^{g}H_{1}{}^{h}$, if $g \neq h$; (2) ${}^{g}H_{1}{}^{g} = \underline{\Bbbk}g \oplus \underline{P}_{g,g}(H)$.

- **Note:** The "difference" between ${}^{g}H_{1}{}^{h}$ and $P_{g,h}(H)$ are contained in H_{0} .
- **Remark.** When *H* is pointed, we may write $H_1 = \bigoplus_{g,h \in G(H)} {}^{g}H_1^{h}$. Thus H_1 is spanned by grouplike and primitive elements.

Results

Primitive elements v.s. primitive matrices

Primitive elements v.s. primitive matrices (1)

- The definition of a $(\mathcal{C}, \mathcal{D})$ -primitive matrix $\mathcal{X} = (X_{ij})_{r \times s}$ might be written as $\Delta(\mathcal{X}) = \mathcal{C} \otimes \mathcal{X} + \mathcal{X} \otimes \mathcal{D}.$
- Let *H* be a coalgebra. A generalized Taft-Wilson proposition could be:

Proposition ([1, Theorem 3.1])

Suppose that $C, D \in S$ with basic multiplicative matrices $C_{r \times r}, D_{s \times s}$, respectively. (1) If $C \neq D$, then for any $x \in {}^{C}H_{1}{}^{D}$, there exist rs(C, D)-primitive matrices

$$\mathcal{X}^{(i',j')} = \left(x_{ij}^{(i',j')} \right)_{r \times s} \qquad (1 \le i' \le r, \ 1 \le j' \le s),$$

such that $x = \sum_{i=1}^{r} \sum_{j=1}^{s} x_{ij}^{(i,j)}$;

(2) If C = D and assume C = D, then for any x ∈ ^CH₁^C, there exist r² (C, C)-primitive matrices

$$\mathcal{X}^{(i',j')} = \left(x_{ij}^{(i',j')} \right)_{r \times r} \qquad (1 \le i',j' \le r),$$

such that $x - \sum_{i,j=1}^{r} x_{ij}^{(i,j)} \in C$.

Results

Primitive elements v.s. primitive matrices

Primitive elements v.s. primitive matrices (1)

Proposition ([1, Theorem 3.1])

Suppose that $C, D \in S$ with basic multiplicative matrices $C_{r \times r}, D_{s \times s}$, respectively. (1) If $C \neq D$, then for any $x \in {}^{C}H_{1}{}^{D}$, there exist rs(C, D)-primitive matrices

$$\mathcal{X}^{(i',j')} = (x_{ij}^{(i',j')})_{r \times s} \qquad (1 \le i' \le r, \ 1 \le j' \le s),$$

such that $x = \sum_{i=1}^{r} \sum_{j=1}^{s} x_{ij}^{(i,j)}$;

(2) If C = D and assume C = D, then for any x ∈ ^CH₁^C, there exist r² (C, C)-primitive matrices

$$\mathcal{X}^{(i',j')} = \left(x_{ij}^{(i',j')}\right)_{r \times r} \qquad (1 \le i', j' \le r),$$

such that $x - \sum_{i,j=1}^{r} x_{ij}^{(i,j)} \in C$.

• **Conclusion.** ${}^{C}H_{1}{}^{D}$ is spanned by entries of $(\mathcal{C}, \mathcal{D})$ -primitive matrices as well as some elements in C + D. If $\overline{\Bbbk} = \Bbbk$ and consider $H_{1} = \bigoplus_{C,D \in S} {}^{C}H_{1}{}^{D}$, then H_{1} is spanned by entries of basic multiplicative and primitive matrices.

Results

Primitive elements v.s. primitive matrices

Primitive elements v.s. primitive matrices (2)

Let H be a Hopf algebra with antipode S.

Fact. For $x \in P_{g,1}(H)$, direct computations follow that

$$S^{2}(x) = g^{-1}xg$$
 and $S^{2n}(x) = g^{-N}xg^{N} = x$,

where $N := \exp(G(H)) | \exp(H_0)$.

Generalization:

Proposition ([2, Lemmas 3.5 and 3.6])

Suppose that C is a basic multiplicative matrix, and \mathcal{X} is a (C, 1)-primitive matrix. (1) $S^2(\mathcal{X}) = ((S(\mathcal{C})\mathcal{X})^T S^2(\mathcal{C})^T)^T$;

(2) If H has the dual Chevalley property, then

$$S^{2N}(\mathcal{X}) = \mathcal{X},$$

where $N := \exp(H_0)$ is the exponent of the Hopf subalgebra H_0 .

Remark. ([3, Proposition 4.10]) If *H* is finite-dimensional, then there exists a $(\mathcal{C}, 1)$ -primitive matrix \mathcal{X}' such that $S^2(\mathcal{X}') = q\mathcal{X}'$, for some *N*th root $q \in \mathbb{k}$ of unity.

Results

An annihilation polynomial for the antipode

An annihilation polynomial for the antipode

Let *H* be a finite-dimensional Hopf algebra with the dual Chevalley property. Denote the Loewy length of *H* by $L := \min\{l \ge 0 \mid H_{l-1} = \overline{H}\}$.

- Known result. (Taft and Wilson, 1974) Suppose *H* is pointed. Denote $N := \exp(G(H))$. Then $(S^{2N} id)^{L-1} = 0$ holds on *H*.
- Generalization:

Theorem ([2, Theorem 3.1])

Denote $N := \exp(H_0)$. Then $(S^{2N} - id)^{L-1} = 0$ holds on H.

Results

An annihilation polynomial for the antipode

An annihilation polynomial for the antipode

Let *H* be a finite-dimensional Hopf algebra with the dual Chevalley property. Denote the Loewy length of *H* by $L := \min\{l \ge 0 \mid H_{l-1} = \overline{H}\}$.

- **Known result.** (Taft and Wilson, 1974) Suppose *H* is pointed. Denote $N := \exp(G(H))$. Then $(S^{2N} id)^{L-1} = 0$ holds on *H*.
- Generalization:

Theorem ([2, Theorem 3.1])

Denote $N := \exp(H_0)$. Then $(S^{2N} - id)^{L-1} = 0$ holds on H.

Consequences:

Theorem ([2, Corollary 3.3 and Theorem 4.3])

Suppose that char k = 0. Then

(1) The composition order of S^2 divides $\exp(H_0)$;

(2) Particularly if $\mathbb{k} = \mathbb{C}$, then the quasi-exponent (introduced by Etingof and Gelaki in 2002) of *H* is exactly $\exp(H_0)$.

Results

Link-indecomposable components and their products

Link relation and link-indecomposable component

Let *H* be a coalgebra. Denote the set of all its simple subcoalgebras by S.

- Link relation on S. (Montgomery, 1995; Radford, 2012) Suppose $C, D \in S$.
 - (1) *C* and *D* are said to be directly linked, if $C + D \subsetneq C \land D + D \land C$;
 - (2) *C* and *D* are said to be linked, if there exist $n \ge 0$ and
 - $C = E_0, E_1, \cdots, E_n = D \in S$, such that E_i and E_{i+1} are directly linked for $0 \le i < n$.
- **Remark.** The link relation is an equivalence relation on S.
- Link-indecomposable component. A link-indecomposable component of *H* is a maximal subcoalgebra *H*′, such that any two simple subcoalgebras of *H*′ are linked.

Lemma (Montgomery, 1995)

Any coalgebra *H* is presented uniquely as a direct sum $H = \bigoplus_i H_{(i)}$ of indecomposable subcoalgebras, where each $H_{(i)}$ is exactly a link-indecomposable component of *H*.

Results

Link-indecomposable components and their products

Link-indecomposable components of pointed Hopf algebras

Let H be a pointed Hopf algebra.

• Let $H_{(g)}$ denote the link-indecomposable component containing $g \in G(H)$. Then:

Theorem (Montgomery, 1995)

- (1) $H_{(1)}$ is a Hopf subalgebra;
- (2) For any $g, h \in G(H), H_{(g)}H_{(h)} \subseteq H_{(gh)}$ and $S(H_{(g)}) \subseteq H_{(g^{-1})}$ hold;

(3) *H* is (left and right) free over $H_{(1)}$. Specifically, $H_{(g)} = gH_{(1)} = H_{(1)}g$ for each $g \in G(H)$, and

$$H = \bigoplus_{g \in G(H)/G(H_{(1)})} gH_{(1)}.$$

Note that $G(H_{(1)})$ is a normal subgroup of G(H).

- Consequences. *H* is (left and right) faithfully flat over the normal Hopf subalgebra $H_{(1)}$.
- Aim. Generalize (1), (2) and the faithful flatness to the case with the dual Chevalley property.

Results

Link-indecomposable components and their products

Link-indecomposable components of Hopf algebras with the dual Chevalley property

Let *H* be a Hopf algebra with the dual Chevalley property over an algebraically closed field \Bbbk . Note that *S* is then bijective.

Let $H_{(C)}$ denote the link-indecomposable component containing $C \in S$. Then:

Theorem ([4, Theorem 3.16 and Corollary 3.17])

- (1) $H_{(1)}$ is a Hopf subalgebra;
- (2) For any $C, D \in \mathcal{S}$,

$$H_{(C)}H_{(D)}\subseteq \sum_{E\in\mathcal{S},\;E\subset CD}H_{(E)}$$

and $S(H_{(C)}) \subseteq H_{(S(C))}$ hold;

(3) *H* is (left and right) faithfully flat over the Hopf subalgebra $H_{(1)}$.

Remark. ([4, Proposition 3.13])

A weaker sufficient condition for (1) is $(H_{(1)})_0^3 \subseteq H_0$, instead of the dual Chevalley property. (Example)

Results

Link-indecomposable components and their products

Further results (in revision)

Recall that when *H* is pointed:

Theorem (Montgomery, 1995)

(3) *H* is (left and right) free over $H_{(1)}$. Specifically, $H_{(g)} = gH_{(1)} = H_{(1)}g$ for each $g \in G(H)$, and

$$H = \bigoplus_{g \in G(H)/G(H_{(1)})} gH_{(1)}.$$

Let *H* be a Hopf algebra with the dual Chevalley property over an arbitrary field \Bbbk .

Theorem

(4) *H* is <u>not</u> always free over $H_{(1)}$. However, $H_{(C)} = CH_{(1)} = H_{(1)}C$ holds for each $C \in S$, and

$$H = \bigoplus_C CH_{(1)},$$

where C runs over arbitrary chosen representatives with respect to "some equivalence relation".

Results

Link-indecomposable components and their products

A sufficient condition for the link relation

Let H be a coalgebra.

• A sufficient condition for two simple subcoalgebras to be linked is Item (1) of the following:

Lemma ([4, Proposition 3.8(2) and Lemma 4.1])

Suppose that

$$\mathcal{G} := \begin{pmatrix} \mathcal{C}_1 & \mathcal{X}_{12} & \cdots & \mathcal{X}_{1t} \\ 0 & \mathcal{C}_2 & \cdots & \mathcal{X}_{2t} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathcal{C}_t \end{pmatrix}$$

is a (block) multiplicative matrix over *H*, where C_1, C_2, \dots, C_t are basic multiplicative matrices for C_1, C_2, \dots, C_t respectively. (1) If any entry of \mathcal{X}_{t_t} does not belong to H_0 , then C_1 and C_t are linked;

(2) If C_1, C_2, \dots, C_t are linked, then all the entries of \mathcal{G} belong to this link-indecomposable component.

■ **Remark.** Item (2) could be used to find the (link-)indecomposable decomposition of *H*. See the example below.

Results

Link-indecomposable components and their products

Example: Decomposition of $T_{\infty}(2, 1, -1)^{\circ}$

Now we work on an algebraically closed field k of characteristic 0.

Infinite-dimensional Taft algebra. (Lu, Wu and Zhang, 2007)

As an algebra, $T_{\infty}(2, 1, -1)$ is generated by g and x with relations:

$$g^2 = 1, \ xg = -gx.$$

Then $T_{\infty}(2, 1, -1)$ becomes a Hopf algebra with comultiplication, counit and antipode given by

$$\begin{split} &\Delta(g)=g\otimes g, \ \ \Delta(x)=1\otimes x+x\otimes g, \ \ \varepsilon(g)=1, \ \ \varepsilon(x)=0, \\ &S(g)=g, \ \ S(x)=gx. \end{split}$$

- **Remark.** Infinite-dimensional Taft algebras $T_{\infty}(n, v, \xi)$ are among the class of affine prime regular Hopf algebras of GK-dimension one.
- Aim: Let us consider its finite dual $T_{\infty}(2, 1, -1)^{\circ}$.

Results

Link-indecomposable components and their products

Example: Decomposition of $T_{\infty}(2, 1, -1)^{\circ}$

Example (Brown, Couto and Jahn, 2021; Li and Liu, 2021)

As an algebra, $T_{\infty}(2, 1, -1)^{\circ}$ is generated by ψ_{λ} ($\lambda \in \mathbb{k}$), ω , E_2 , E_1 with relations

$$\begin{split} \psi_{\lambda_1}\psi_{\lambda_2} &= \psi_{\lambda_1+\lambda_2}, \quad \psi_0 = 1, \quad \omega^2 = 1, \quad E_1^2 = 0, \\ \omega\psi_{\lambda} &= \psi_{\lambda}\omega, \quad E_2\omega = \omega E_2, \quad E_1\omega = -\omega E_1, \\ E_2\psi_{\lambda} &= \psi_{\lambda}E_2, \quad E_1\psi_{\lambda} = \psi_{\lambda}E_1, \quad E_1E_2 = E_2E_1 \end{split}$$

for all $\lambda, \lambda_1, \lambda_2 \in \mathbb{k}$. The coalgebra structure and antipode are given by:

$$\begin{split} \Delta(\omega) &= \omega \otimes \omega, \ \Delta(E_1) = 1 \otimes E_1 + E_1 \otimes \omega, \\ \Delta(E_2) &= 1 \otimes E_2 + E_1 \otimes \omega E_1 + E_2 \otimes 1, \\ \Delta(\psi_{\lambda}) &= (\psi_{\lambda} \otimes \psi_{\lambda})(1 \otimes 1 + \lambda E_1 \otimes \omega E_1), \\ \varepsilon(\omega) &= \varepsilon(\psi_{\lambda}) = 1, \ \varepsilon(E_1) = \varepsilon(E_2) = 0, \\ S(\omega) &= \omega, \ S(E_1) = \omega E_1, \ S(E_2) = -E_2, \ S(\psi_{\lambda}) = \psi_{-\lambda}, \end{split}$$

for $\lambda \in \mathbb{k}$.

Note that $\{\psi_{\lambda}\omega^{j}E_{2}^{s}E_{1}^{l} \mid \lambda \in \mathbb{k}, 0 \leq j, l \leq 1, s \in \mathbb{N}\}$ is a linear basis.

Results

Link-indecomposable components and their products

Example: Decomposition of $T_{\infty}(2, 1, -1)^{\circ}$

- Note that $\{\psi_{\lambda}\omega^{j}E_{2}^{s}E_{1}^{l} \mid \lambda \in \mathbb{k}, \ 0 \leq j, l \leq 1, \ s \in \mathbb{N}\}$ is a linear basis.
- **Fact.** ([4, Proposition 4.9]) Following matrices over $\underline{H := T(2, 1, -1)^{\circ}}$ are multiplicative:

(1) 1 and ω ;

(2)
$$\mathcal{E} := \begin{pmatrix} 1 & E_1 & E_2 \\ 0 & \omega & \omega E_1 \\ 0 & 0 & 1 \end{pmatrix} \implies \Bbbk 1 \text{ and } \Bbbk \omega \text{ are linked};$$

(3) $\mathcal{E}^{\odot s}$ for all $s \ge 1 \implies$ Their entries belong to $H_{(1)}$;

Results

Link-indecomposable components and their products

Example: Decomposition of $T_{\infty}(2, 1, -1)^{\circ}$

- Note that $\{\psi_{\lambda}\omega^{j}E_{2}^{s}E_{1}^{l} \mid \lambda \in \mathbb{k}, \ 0 \leq j, l \leq 1, \ s \in \mathbb{N}\}$ is a linear basis.
- **Fact.** ([4, Proposition 4.9]) Following matrices over $\underline{H := T(2, 1, -1)^{\circ}}$ are multiplicative:
 - (1) 1 and ω ;
 - (2) $\mathcal{E} := \begin{pmatrix} 1 & E_1 & E_2 \\ 0 & \omega & \omega E_1 \\ 0 & 0 & 1 \end{pmatrix} \implies \Bbbk 1 \text{ and } \Bbbk \omega \text{ are linked};$
 - (3) $\mathcal{E}^{\odot s}$ for all $s \ge 1 \implies$ Their entries belong to $H_{(1)}$;
 - (4) For each $\lambda \in \mathbb{k}^*$, $C_{\lambda} := \begin{pmatrix} \psi_{\lambda} & \lambda \psi_{\lambda} E_1 \\ \psi_{\lambda} \omega E_1 & \psi_{\lambda} \omega \end{pmatrix}$ is basic for the simple subcoalgebra C_{λ} ;
 - (5) For each $\lambda \in \mathbb{k}^*$, $\mathcal{E}^{\odot s} \odot \mathcal{C}_{\lambda}$ for all $s \ge 1 \implies$ Entries belong to $H_{(\mathcal{C}_{\lambda})}$.

Results

Link-indecomposable components and their products

Example: Decomposition of $T_{\infty}(2, 1, -1)^{\circ}$

- Note that $\{\psi_{\lambda}\omega^{j}E_{2}^{s}E_{1}^{l} \mid \lambda \in \mathbb{k}, \ 0 \leq j, l \leq 1, \ s \in \mathbb{N}\}$ is a linear basis.
- **Fact.** ([4, Proposition 4.9]) Following matrices over $\underline{H} := T(2, 1, -1)^{\circ}$ are multiplicative:
 - (1) 1 and ω ;
 - (2) $\mathcal{E} := \begin{pmatrix} 1 & E_1 & E_2 \\ 0 & \omega & \omega E_1 \\ 0 & 0 & 1 \end{pmatrix} \implies \Bbbk 1 \text{ and } \Bbbk \omega \text{ are linked};$
 - (3) $\mathcal{E}^{\odot s}$ for all $s \ge 1 \implies$ Their entries belong to $H_{(1)}$;
 - (4) For each $\lambda \in \mathbb{k}^*$, $C_{\lambda} := \begin{pmatrix} \psi_{\lambda} & \lambda \psi_{\lambda} E_1 \\ \psi_{\lambda} \omega E_1 & \psi_{\lambda} \omega \end{pmatrix}$ is basic for the simple subcoalgebra C_{λ} ;
 - (5) For each $\lambda \in \mathbb{k}^*$, $\mathcal{E}^{\odot s} \odot \mathcal{C}_{\lambda}$ for all $s \ge 1 \implies$ Entries belong to $H_{(\mathcal{C}_{\lambda})}$.
- **Conclusion.** Since every basis element appears as some entry above, the link-indecomposable decomposition for $H := T(2, 1, -1)^{\circ}$ is then

$$H = H_{(1)} \oplus \left(\bigoplus_{\lambda \in \Bbbk^*} H_{(C_{\lambda})} \right).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Results

Link-indecomposable components and their products

Example: Decomposition of $T_{\infty}(2, 1, -1)^{\circ}$

Still denote $H := T_{\infty}(2, 1, -1)^{\circ}$. Some observations:

• $T_{\infty}(2, 1, -1)^{\circ}$ does not have the dual Chevalley property, because

$$C_{\lambda}C_{-\lambda} = \mathbb{k}\{1, \ \omega, \ \underline{E}_1, \ \omega \underline{E}_1\}.$$

However, the weaker condition $(H_{(1)})_0^3 \subseteq H_0$ holds, and thus $H_{(1)}$ is still a Hopf subalgebra.

• More than $H_{(C_{\lambda})} = C_{\lambda}H_{(1)} = H_{(1)}C_{\lambda}$, we could find that

 $H_{(C_{\lambda})} = \psi_{\lambda} H_{(1)}$ and $H_{(C_{\lambda})} = H_{(1)} \psi_{\lambda}$

hold (also as left and right $H_{(1)}$ -modules respectively). Thus *H* is <u>free</u> over the <u>normal</u> Hopf subalgebra $H_{(1)}$.

Denote the Hopf algebra $H_{(1)}$ by $T_{\infty}(2, 1, -1)^{\bullet}$. In fact the evaluation

$$\langle -, - \rangle : T_{\infty}(2, 1, -1)^{\bullet} \otimes T_{\infty}(2, 1, -1) \to \mathbb{k}$$

is a non-degenerate Hopf pairing of GK-dimension one.

References

References

- K. Brown, M. Couto and A. Jahn, *The finite dual of commutative-by-finite Hopf algebras*. arXiv:2105.13874.
- P. Etingof and S. Gelaki, On the exponent of finite-dimensional Hopf algebras. Math. Res. Lett. 6 (1999), no. 2, 131-140.
- P. Etingof and S. Gelaki, *On the quasi-exponent of finite-dimensional Hopf algebras*. Math. Res. Lett. 9 (2002), no. 2-3, 277-287.
- Y. Kashina, On the order of the antipode of Hopf algebras in ${}_{H}^{H}\mathcal{YD}$. Comm. Algebra 27 (1999), no. 3, 1261-1273.
- K. Li and G. Liu, *The finite duals of affine prime regular Hopf algebras of GK-dimension one*. arXiv:2103.00495.
- D.-M. Lu, Q.-S. Wu and J.J. Zhang, *Homological integral of Hopf algebras*. Trans. Amer. Math. Soc. 359 (2007), no. 10, 4945-4975.
- Y.I. Manin, *Quantum Groups and Noncommutative Geometry*. Universitlé de Montrléal, Centre de Recherches Mathlématiques, Montreal, QC, 1988. vi+91 pp.

References

References

- S. Montgomery, *Indecomposable coalgebras, simple comodules, and pointed Hopf algebras.* Proc. Amer. Math. Soc. 123 (1995), no. 8, 2343-2351.
- D.E. Radford, On the structure of commutative pointed Hopf algebras. J. Algebra 50 (1978), no. 2, 284-296.
- D.E. Radford, *Hopf Algebras*. Series on Knots and Everything, 49. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. xxii+559 pp.
- E.J. Taft and R.L. Wilson, *On antipodes in pointed Hopf algebras*. J. Algebra 29 (1974), 27-32.

Thank you !