Renormalization of weak quasisymmetric functions

Houyi Yu

Southwest University

(Joint work with Li Guo and Bin Zhang)

2021 Conference on Hopf Algebra Aug. 25, 2021

Outline

Motivation

Weak quasisymmetric functions

Renormalization of weak quasisymmetric functions

$$\sum_{i=1}^{\infty} 1 = 1+1+1+\cdots$$

$$\sum_{i=1}^{\infty} 1 = 1 + 1 + 1 + \cdots = -\frac{1}{2}$$

$$\sum_{i=1}^{\infty} 1 = 1 + 1 + 1 + \cdots = -\frac{1}{2} - t.$$

▶ A weak composition (WC) is a vector $\alpha = (\alpha_1, \dots, \alpha_k) \in \mathbb{N}^k$.

A left weak composition (\mathcal{LWC}) is a weak composition ($\alpha_1, \dots, \alpha_k$) with $\alpha_k > 0$.

A **composition** (\mathcal{C}) is a weak composition $(\alpha_1, \dots, \alpha_k)$ with $\alpha_i > 0$, $i = 1, 2, \dots, k$.

▶ A weak composition (WC) is a vector $\alpha = (\alpha_1, \dots, \alpha_k) \in \mathbb{N}^k$.

A left weak composition (\mathcal{LWC}) is a weak composition ($\alpha_1, \cdots, \alpha_k$) with $\alpha_k > 0$.

A **composition** (\mathcal{C}) is a weak composition $(\alpha_1, \dots, \alpha_k)$ with $\alpha_i > 0$, $i = 1, 2, \dots, k$.

▶ A quasisymmetric function (QSym) in the variables $X = (x_1, x_2, \cdots)$ is a bounded degree formal power series $f(X) \in \mathbb{Q}[[X]]$ such that for any composition $(\alpha_1, \alpha_2, \cdots, \alpha_k)$, we have a = b in

$$f(x_1,x_2,\cdots)=\underset{a}{a}x_1^{\alpha_1}x_2^{\alpha_2}\cdots x_k^{\alpha_k}+\cdots+\underset{b}{b}x_{i_1}^{\alpha_1}x_{i_2}^{\alpha_2}\cdots x_{i_k}^{\alpha_k}+\cdots.$$

whenever $i_1 < i_2 < \cdots < i_k$.

▶ A weak composition (\mathcal{WC}) is a vector $\alpha = (\alpha_1, \dots, \alpha_k) \in \mathbb{N}^k$.

A left weak composition (\mathcal{LWC}) is a weak composition ($\alpha_1, \cdots, \alpha_k$) with $\alpha_k > 0$.

A **composition** (\mathcal{C}) is a weak composition $(\alpha_1, \dots, \alpha_k)$ with $\alpha_i > 0$, $i = 1, 2, \dots, k$.

▶ A quasisymmetric function (QSym) in the variables $X = (x_1, x_2, \cdots)$ is a bounded degree formal power series $f(X) \in \mathbb{Q}[[X]]$ such that for any composition $(\alpha_1, \alpha_2, \cdots, \alpha_k)$, we have a = b in

$$f(X_1,X_2,\cdots)=\frac{a}{a}X_1^{\alpha_1}X_2^{\alpha_2}\cdots X_k^{\alpha_k}+\cdots+\frac{b}{b}X_{i_1}^{\alpha_1}X_{i_2}^{\alpha_2}\cdots X_{i_k}^{\alpha_k}+\cdots.$$

whenever $i_1 < i_2 < \cdots < i_k$.

► Example $M_{(2,1)} = \sum_{i_1 < i_2} x_{i_1}^2 x_{i_2} = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 + \dots + x_{i_1}^2 x_{i_2} + \dots$

Fix a composition $\alpha = (\alpha_1, \alpha_2 \cdots, \alpha_k)$, the monomial quasisymmetric function indexed by α is

$$M_{\alpha} = \sum_{i_1 < i_2 < \cdots < i_k} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_k}^{\alpha_k}.$$

Define $\mathbf{QSym}_n = \mathrm{Span}\{M_\alpha | \alpha \models n\}$ and $\mathbf{QSym} = \bigoplus_{n \geq 0} \mathbf{QSym}_n$.

Fix a composition $\alpha = (\alpha_1, \alpha_2 \cdots, \alpha_k)$, the monomial quasisymmetric function indexed by α is

$$M_{\alpha} = \sum_{i_1 < i_2 < \cdots < i_k} X_{i_1}^{\alpha_1} X_{i_2}^{\alpha_2} \cdots X_{i_k}^{\alpha_k}.$$

Define $\mathbf{QSym}_n = \mathrm{Span}\{M_\alpha | \alpha \models n\}$ and $\mathbf{QSym} = \bigoplus_{n \geq 0} \mathbf{QSym}_n$.

Theorem (I. Gessel, 1984) QSym is a Hopf algebra.

I. Gessel, Multipartite P-partitions and inner products of skew Schur functions, *Contemp. Math.* **34** (1984), 289–301.

Fix a composition $\alpha = (\alpha_1, \alpha_2 \cdots, \alpha_k)$, the monomial quasisymmetric function indexed by α is

$$M_{\alpha} = \sum_{i_1 < i_2 < \cdots < i_k} X_{i_1}^{\alpha_1} X_{i_2}^{\alpha_2} \cdots X_{i_k}^{\alpha_k}.$$

Define $\mathbf{QSym}_n = \mathrm{Span}\{M_\alpha | \alpha \models n\}$ and $\mathbf{QSym} = \bigoplus_{n>0} \mathbf{QSym}_n$.

Theorem (I. Gessel, 1984) QSym is a Hopf algebra.

- I. Gessel, Multipartite P-partitions and inner products of skew Schur functions, *Contemp. Math.* **34** (1984), 289–301.
- Left weak quasisymmetric functions LWQSym can be defined analogously.

Fix a composition $\alpha = (\alpha_1, \alpha_2 \cdots, \alpha_k)$, the monomial quasisymmetric function indexed by α is

$$M_{\alpha} = \sum_{i_1 < i_2 < \cdots < i_k} X_{i_1}^{\alpha_1} X_{i_2}^{\alpha_2} \cdots X_{i_k}^{\alpha_k}.$$

Define $\mathbf{QSym}_n = \mathrm{Span}\{M_\alpha | \alpha \models n\}$ and $\mathbf{QSym} = \bigoplus_{n \geq 0} \mathbf{QSym}_n$.

Theorem (I. Gessel, 1984) QSym is a Hopf algebra.

- I. Gessel, Multipartite P-partitions and inner products of skew Schur functions, *Contemp. Math.* **34** (1984), 289–301.
- Left weak quasisymmetric functions LWQSym can be defined analogously.
- M_{α} is not well-defined if $\alpha_k = 0$. For example,

$$M_0=\sum_i x_i^0=1+1+\cdots$$

Fix a composition $\alpha = (\alpha_1, \alpha_2 \cdots, \alpha_k)$, the monomial quasisymmetric function indexed by α is

$$M_{\alpha} = \sum_{i_1 < i_2 < \cdots < i_k} X_{i_1}^{\alpha_1} X_{i_2}^{\alpha_2} \cdots X_{i_k}^{\alpha_k}.$$

Define $\mathbf{QSym}_n = \mathrm{Span}\{M_\alpha | \alpha \models n\}$ and $\mathbf{QSym} = \bigoplus_{n \geq 0} \mathbf{QSym}_n$.

Theorem (I. Gessel, 1984) QSym is a Hopf algebra.

- I. Gessel, Multipartite P-partitions and inner products of skew Schur functions, Contemp. Math. 34 (1984), 289–301.
- Left weak quasisymmetric functions LWQSym can be defined analogously.
- ▶ M_{α} is not well-defined if $\alpha_k = 0$. For example,

$$M_0 = \sum_i x_i^0 = 1 + 1 + \dots = \infty$$
 (diverges).

Fix a composition $\alpha = (\alpha_1, \alpha_2 \cdots, \alpha_k)$, the monomial quasisymmetric function indexed by α is

$$M_{\alpha} = \sum_{i_1 < i_2 < \cdots < i_k} X_{i_1}^{\alpha_1} X_{i_2}^{\alpha_2} \cdots X_{i_k}^{\alpha_k}.$$

Define $\mathbf{QSym}_n = \mathrm{Span}\{M_\alpha | \alpha \models n\}$ and $\mathbf{QSym} = \bigoplus_{n>0} \mathbf{QSym}_n$.

Theorem (I. Gessel, 1984) QSym is a Hopf algebra.

- I. Gessel, Multipartite P-partitions and inner products of skew Schur functions, *Contemp. Math.* **34** (1984), 289–301.
- Left weak quasisymmetric functions LWQSym can be defined analogously.
- ▶ M_{α} is not well-defined if $\alpha_k = 0$. For example,

$$M_0 = \sum_i x_i^0 = 1 + 1 + \dots = \infty$$
 (diverges).

Question: Why and How to deal with this divergence?

Rota-Baxter algebra

Rota's Conjecture/Question In 1995, Rota conjectured that Baxter algebras represent the ultimate and most natural generalization of the algebra of symmetric functions.

G.-C. Rota, Baxter operators, an introduction, In: "Gian-Carlo Rota on Combinatorics, Introductory Papers and Commentaries", Birkhäuser, Boston, 1995.

Rota-Baxter algebra

Rota's Conjecture/Question In 1995, Rota conjectured that Baxter algebras represent the ultimate and most natural generalization of the algebra of symmetric functions.

G.-C. Rota, Baxter operators, an introduction, In: "Gian-Carlo Rota on Combinatorics, Introductory Papers and Commentaries", Birkhäuser, Boston, 1995.

Rota Program Study generalizations of symmetric functions in the context of Rota-Baxter algebras.

Y. Li, On weak peak quasisymmetric functions, *J. Combin. Theory, Ser. A* **158** (2018), 449-491.

L. Guo, J.-Y. Thibon and H. Yu, Weak quasi-symmetric functions, Rota-Baxter algebras and Hopf algebras, *Adv. Math.* **344** (2019) 1–34.

Free unitary Rota-Baxter algebra

 \blacktriangleright (III(x), P_x) is the free commutative unitary Rota-Baxter algebra on x, where

$$\mathrm{III}(x) := \bigoplus_{k \geq 0} \left(\mathbf{k}[x]^{\otimes (k+1)} \right) = \bigoplus_{\alpha_i \geq 0, 0 \leq i \leq k} \mathbf{k} x^{\alpha_0} \otimes \cdots \otimes x^{\alpha_k}$$

and $P_x: x^{\alpha_0} \otimes x^{\alpha_1} \otimes \cdots \otimes x^{\alpha_k} \mapsto 1 \otimes x^{\alpha_0} \otimes x^{\alpha_1} \otimes \cdots \otimes x^{\alpha_k}$.

- Free unitary Rota-Baxter algebra
- \blacktriangleright (III(x), P_x) is the free commutative unitary Rota-Baxter algebra on x, where

$$\mathrm{III}(x) := \bigoplus_{k \geq 0} \left(\mathbf{k}[x]^{\otimes (k+1)} \right) = \bigoplus_{\alpha_i \geq 0, 0 \leq i \leq k} \mathbf{k} x^{\alpha_0} \otimes \cdots \otimes x^{\alpha_k}$$

and $P_x: x^{\alpha_0} \otimes x^{\alpha_1} \otimes \cdots \otimes x^{\alpha_k} \mapsto 1 \otimes x^{\alpha_0} \otimes x^{\alpha_1} \otimes \cdots \otimes x^{\alpha_k}$.

▶ The pure tensor $1 \otimes x^{\alpha_0} \otimes x^{\alpha_1} \otimes \cdots \otimes x^{\alpha_k}$ can be viewed as

$$M_{(\alpha_0,\alpha_1,\cdots,\alpha_k)} = \sum_{\substack{i_0 < i_1 < \cdots < i_k \\ i_0}} X_{i_0}^{\alpha_0} X_{i_1}^{\alpha_1} \cdots X_{i_k}^{\alpha_k},$$

where $(\alpha_0, \alpha_1, \dots, \alpha_k)$ is a weak composition.

▶ By specializing x_i to 1/i, M_{α} gives the multiple zeta value (MZV)

$$\zeta(\alpha_1,\alpha_2,\cdots,\alpha_k):=\sum_{0< i_1< i_2<\cdots< i_k}\frac{1}{i_1^{\alpha_1}i_2^{\alpha_2}\cdots i_k^{\alpha_k}},$$

which is convergent for $\alpha_k \ge 2$, $\alpha_j \ge 1$, $1 \le j \le k - 1$.

▶ By specializing x_i to 1/i, M_{α} gives the multiple zeta value (MZV)

$$\zeta(\alpha_1,\alpha_2,\cdots,\alpha_k):=\sum_{0< i_1< i_2<\cdots< i_k}\frac{1}{i_1^{\alpha_1}i_2^{\alpha_2}\cdots i_k^{\alpha_k}},$$

which is convergent for $\alpha_k \ge 2$, $\alpha_j \ge 1$, $1 \le j \le k - 1$.

Divergent MZVs have been defined through various renormalization processes. The success suggests that M_{α} can be similarly treated, providing a testing ground in applying the renormalization method to divergencies in mathematics.

L. Guo and B. Zhang, Renormalization of multiple zeta values, *J. Algebra*, **319** (2008), 3770–3809

K. Ihara, M. Kaneko and D. Zagier, Derivation and double shuffle relations for multiple zeta values, *Compos. Math.*, **142** (2006), 307–338.

D. Manchon and S. Paycha, Nested sums of symbols and renormalized multiple zeta values, *Int. Math. Res. Not. IMRN*, **2010** (2010), 4628–4697.

▶ Power series realizations in abstractly combinatorial Hopf algebras.

Bijections $\mathbb{QC} \to \textbf{QSym}$ and $\mathbb{QLWC} \to \textbf{LWQSym}$, defined by

$$\alpha = (\alpha_1, \alpha_2 \cdots, \alpha_k) \mapsto \textit{M}_{\alpha} = \sum_{i_1 < i_2 < \cdots < i_k} \textit{X}_{i_1}^{\alpha_1} \textit{X}_{i_2}^{\alpha_2} \cdots \textit{X}_{i_k}^{\alpha_k},$$

give a power series realization of the quasi-shuffle algebras.

Power series realizations in abstractly combinatorial Hopf algebras.

Bijections $\mathbb{QC} \to \mathbf{QSym}$ and $\mathbb{QLWC} \to \mathbf{LWQSym}$, defined by

$$\alpha = (\alpha_1, \alpha_2 \cdots, \alpha_k) \mapsto M_{\alpha} = \sum_{i_1 < i_2 < \cdots < i_k} X_{i_1}^{\alpha_1} X_{i_2}^{\alpha_2} \cdots X_{i_k}^{\alpha_k},$$

give a power series realization of the quasi-shuffle algebras.

▶ What is the power series realization of QWC?

L. Foissy, J.-C. Novelli and J.-Y. Thibon, Polynomial realizations of some combinatorial Hopf algebras. *J. Noncommut. Geom.*, **8** (2014), 141–162.

L. Guo, H. Yu and J. Zhao, Rota–Baxter algebras and left weak quasi-symmetric functions, *Ramanuian J.* **44** (2017) 567–596.

R. Maurice, A polynomial realization of the Hopf algebra of uniform block permutations, *Adv. Appl. Math.*, **51** (2013), 285–308.

Y. Zhang, X. Gao, Hopf algebras of planar binary trees: an operated algebra approach. *J. Algebraic Combin.* **51** (2020),567–588.

Outline

Motivation

► Weak quasisymmetric functions

Renormalization of weak quasisymmetric functions

▶ Let $\widetilde{\mathbb{N}} := \mathbb{N} \cup \{\varepsilon\}$, satisfying $0 + \varepsilon = \varepsilon + 0 = \varepsilon + \varepsilon = \varepsilon$ and $n + \varepsilon = \varepsilon + n = n$ for all $n \ge 1$.

$$0,1,2,3,\cdots \Rightarrow 0, \underline{\varepsilon},1,2,3,\cdots.$$

▶ Let $\widetilde{\mathbb{N}} := \mathbb{N} \cup \{\varepsilon\}$, satisfying $0 + \varepsilon = \varepsilon + 0 = \varepsilon + \varepsilon = \varepsilon$ and $n + \varepsilon = \varepsilon + n = n$ for all $n \ge 1$.

$$0, 1, 2, 3, \dots \Rightarrow 0, \varepsilon, 1, 2, 3, \dots$$

An $\widetilde{\mathbb{N}}$ -composition $(\widetilde{\mathbb{C}})$ is a vector $\alpha = (\alpha_1, \dots, \alpha_k) \in \widetilde{\mathbb{N}}^k$ with $\alpha_i \neq 0$, $i = 1, 2, \dots, k$.

Let $\widetilde{\mathbb{N}} := \mathbb{N} \cup \{\varepsilon\}$, satisfying $0 + \varepsilon = \varepsilon + 0 = \varepsilon + \varepsilon = \varepsilon$ and $n + \varepsilon = \varepsilon + n = n$ for all $n \ge 1$.

$$0, 1, 2, 3, \dots \Rightarrow 0, \varepsilon, 1, 2, 3, \dots$$

An $\widetilde{\mathbb{N}}$ -composition $(\widetilde{\mathcal{C}})$ is a vector $\alpha = (\alpha_1, \dots, \alpha_k) \in \widetilde{\mathbb{N}}^k$ with $\alpha_i \neq 0$, $i = 1, 2, \dots, k$.

▶ Each $\widetilde{\mathbb{N}}$ -composition $\alpha = (\alpha_1, \alpha_2 \cdots, \alpha_k)$ corresponds to a **monomial weak** quasisymmetric function

$$M_{\alpha} = \sum_{i_1 < i_2 < \dots < i_k} X_{i_1}^{\alpha_1} X_{i_2}^{\alpha_2} \cdots X_{i_k}^{\alpha_k}.$$

For example,

example,

$$M_0 \rightarrow M_{\varepsilon} = \sum_i x_i^{\varepsilon} = x_1^{\varepsilon} + x_2^{\varepsilon} + \cdots,$$

 $M_{(3,0)} \rightarrow M_{(3,\varepsilon)} = \sum_{i_1 < i_2} x_{i_1}^3 x_{i_2}^{\varepsilon} = x_1^3 x_2^{\varepsilon} + x_1^3 x_3^{\varepsilon} + \cdots + x_2^3 x_3^{\varepsilon} + x_2^3 x_4^{\varepsilon} + \cdots.$

▶ Let $\widetilde{\mathbb{N}} := \mathbb{N} \cup \{\varepsilon\}$, satisfying $0 + \varepsilon = \varepsilon + 0 = \varepsilon + \varepsilon = \varepsilon$ and $n + \varepsilon = \varepsilon + n = n$ for all n > 1.

$$0, 1, 2, 3, \cdots \Rightarrow 0, \varepsilon, 1, 2, 3, \cdots$$

An $\widetilde{\mathbb{N}}$ -composition $(\widetilde{\mathfrak{C}})$ is a vector $\alpha = (\alpha_1, \dots, \alpha_k) \in \widetilde{\mathbb{N}}^k$ with $\alpha_i \neq 0$, $i=1,2,\cdots,k$.

▶ Each $\widetilde{\mathbb{N}}$ -composition $\alpha = (\alpha_1, \alpha_2 \cdots, \alpha_k)$ corresponds to a **monomial weak** quasisymmetric function

$$M_{\alpha} = \sum_{i_1 < i_2 < \cdots < i_k} X_{i_1}^{\alpha_1} X_{i_2}^{\alpha_2} \cdots X_{i_k}^{\alpha_k}.$$

For example.

example,
$$M_0 \rightarrow M_\varepsilon = \sum_i x_i^\varepsilon = x_1^\varepsilon + x_2^\varepsilon + \cdots,$$

$$M_{(3,0)} \rightarrow M_{(3,\varepsilon)} = \sum_{i_1 < i_2} x_{i_1}^3 x_{i_2}^\varepsilon = x_1^3 x_2^\varepsilon + x_1^3 x_3^\varepsilon + \cdots + x_2^3 x_3^\varepsilon + x_2^3 x_4^\varepsilon + \cdots.$$

RQSym = span $\{M_{\alpha} | \alpha \in \mathcal{C}\}$ is called the algebra of weak quasi-symmetric functions.

Theorem (L. Guo, H. Y. & J. Zhao, 2017)

 $\mathbf{k}[x] \otimes \mathbf{LWQSym}$ is the free commutative nonunitary Rota-Baxter algebra of weight 1 on x.

Theorem (L. Guo, H. Y. & J. Zhao, 2017)

 $\mathbf{k}[x] \otimes \mathbf{LWQSym}$ is the free commutative nonunitary Rota-Baxter algebra of weight 1 on x.

Theorem (L. Guo, Y. Thibon & H. Y., 2019)

- (1) $\mathbf{k}[x] \otimes \mathbf{RQSym}$ is the free commutative unitary Rota-Baxter algebra of weight 1 on x;
- (2) **QSym** is a Hopf subalgebra and Hopf quotient algebra of **RQSym**.
- L. Guo, H. Yu and J. Zhao, Rota–Baxter algebras and left weak composition quasi-symmetric functions, *Ramanujan J.* **44** (2017) 567–596.
 - L. Guo, J.-Y. Thibon and H. Yu, Weak quasi-symmetric functions, Rota-Baxter algebras and Hopf algebras, *Adv. Math.* **344** (2019) 1–34.

Outline

Motivation

Weak quasisymmetric functions

► Renormalization of weak quasisymmetric functions

In quantum field theory (QFT), quantities describing interactions among elementary particles are expressed as Feynman integrals, which are usually divergent.

- In quantum field theory (QFT), quantities describing interactions among elementary particles are expressed as Feynman integrals, which are usually divergent.
- In order to extract finite values from these integrals, physicists developed a procedure called renormalization, which was remarkably successful as a physical theory, but weak in math foundation.

- In quantum field theory (QFT), quantities describing interactions among elementary particles are expressed as Feynman integrals, which are usually divergent.
- In order to extract finite values from these integrals, physicists developed a procedure called renormalization, which was remarkably successful as a physical theory, but weak in math foundation.
- Connes and Kreimer provided a mathematical framework for renormalization.
- A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem I. The Hopf algebra structure of graphs and the main theorem, *Comm. Math. Phys.*, **210** (2000), 249–273.

D. Manchon, Hopf algebras in renormalisation, *Handbook of Algebra* (M. Hazewinkel ed.) **5** (2008), 365-427, arXiv:math. QA/0408405.

▶ A connected filtered Hopf algebra is a Hopf algebra $(H, m, u, \Delta, \varepsilon, S)$ satisfying

$$\begin{split} H^{(0)} &= \mathbf{k}, \quad H^{(n)} \subseteq H^{(n+1)}, \quad H^{(p)}H^{(q)} \subseteq H^{(p+q)}, \\ \Delta(H^{(n)}) \subseteq \sum_{p+q=n} H^{(p)} \otimes H^{(q)}, \quad S(H^{(n)}) \subseteq H^{(n)}. \end{split}$$

 A connected filtered Hopf algebra is a Hopf algebra (H, m, u, Δ, ε, S) satisfying

$$H^{(0)} = \mathbf{k}, \quad H^{(n)} \subseteq H^{(n+1)}, \quad H^{(p)}H^{(q)} \subseteq H^{(p+q)},$$

$$\Delta(H^{(n)}) \subseteq \sum_{p+q=n} H^{(p)} \otimes H^{(q)}, \quad S(H^{(n)}) \subseteq H^{(n)}.$$

Fix λ in a base field **k**. A **Rota-Baxter algebra** of weight λ is a pair (R, P) consisting of an algebra R and a linear operator $P: R \to R$ such that

$$P(x)P(y) = P(xP(y)) + P(P(x)y) + \lambda P(xy), \ \forall x, y \in R.$$

▶ A connected filtered Hopf algebra is a Hopf algebra $(H, m, u, \Delta, \varepsilon, S)$ satisfying

$$\begin{split} & \boldsymbol{H}^{(0)} = \boldsymbol{k}, \quad \boldsymbol{H}^{(n)} \subseteq \boldsymbol{H}^{(n+1)}, \quad \boldsymbol{H}^{(p)} \boldsymbol{H}^{(q)} \subseteq \boldsymbol{H}^{(p+q)}, \\ & \boldsymbol{\Delta}(\boldsymbol{H}^{(n)}) \subseteq \sum_{p+q=n} \boldsymbol{H}^{(p)} \otimes \boldsymbol{H}^{(q)}, \quad \boldsymbol{S}(\boldsymbol{H}^{(n)}) \subseteq \boldsymbol{H}^{(n)}. \end{split}$$

Fix λ in a base field **k**. A **Rota-Baxter algebra** of weight λ is a pair (R, P) consisting of an algebra R and a linear operator $P: R \to R$ such that

$$P(x)P(y) = P(xP(y)) + P(P(x)y) + \lambda P(xy), \ \forall x, y \in R.$$

▶ Laurent series A Rota-Baxter algebra of weight −1:

$$R = \mathbb{C}[t^{-1}, t]] = \left\{\sum_{n=k}^{\infty} a_n t^n | a_n \in \mathbb{C}, k \leq n < \infty, k \in \mathbb{Z}\right\}, P\left(\sum_{n=k}^{\infty} a_n t^n\right) = \sum_{n=k}^{-1} a_n t^n.$$

Algebraic Birkhoff Factorization

Algebraic Birkhoff Factorization Theorem For a given triple (H, R, ϕ) consisting of

- ▶ a connected filtered Hopf algebra H,
- a commutative Rota-Baxter algebra R on which the Rota-Baxter operator P: R → R is idempotent, and
- ▶ an algebra homomorphism $\phi: H \to R$ serving as the regularization map, there is a unique algebra homomorphisms decomposition

$$\phi = \phi_+ \star \phi_-^{\star (-1)} \quad \text{where} \quad \begin{cases} \phi_- : H & \to \mathbf{k} + P(R) \quad \text{(counter term)} \\ \phi_+ : H & \to \mathbf{k} + (\mathrm{id} - P)(R) \quad \text{(renormalization)}. \end{cases}$$

Here \star is the convolution product and ϕ_+ is called the renormalization of ϕ .

Algebraic Birkhoff Factorization

Quasi-shuffle Hopf algebra of directional weak compositions

$$H_{DWC} = QS(\mathbf{k}(\mathbb{N} \times \mathbb{P}))$$

with a canonical basis

$$\mathrm{DWC} := \Big\{ \left[\begin{smallmatrix} \alpha \\ \beta \end{smallmatrix} \right] = \left[\begin{smallmatrix} \alpha_1, \dots, \alpha_k \\ \beta_1, \dots, \beta_k \end{smallmatrix} \right] \ \Big| \ \alpha \in \mathbb{N}^k, \beta \in \mathbb{P}^k, k \in \mathbb{N} \Big\}.$$

whose elements will be called the directional weak compositions.

Quasi-shuffle Hopf algebra of directional weak compositions

$$H_{DWC} = QS(\mathbf{k}(\mathbb{N} \times \mathbb{P}))$$

with a canonical basis

$$DWC := \left\{ \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha_1, \dots, \alpha_k \\ \beta_1, \dots, \beta_k \end{bmatrix} \middle| \alpha \in \mathbb{N}^k, \beta \in \mathbb{P}^k, k \in \mathbb{N} \right\}.$$

whose elements will be called the directional weak compositions.

▶ Rota-Baxter algebra $R = \text{LWQSym}[t][z, z^{-1}]]$, where t is a a variable.

Quasi-shuffle Hopf algebra of directional weak compositions

$$H_{\mathrm{DWC}} = \mathrm{QS}(\mathbf{k}(\mathbb{N} \times \mathbb{P}))$$

with a canonical basis

DWC :=
$$\left\{ \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha_1, \dots, \alpha_k \\ \beta_1, \dots, \beta_k \end{bmatrix} \middle| \alpha \in \mathbb{N}^k, \beta \in \mathbb{P}^k, k \in \mathbb{N} \right\}.$$

whose elements will be called the directional weak compositions.

- ▶ Rota-Baxter algebra $R = \text{LWQSym}[t][z, z^{-1}]]$, where t is a a variable.
- ► Regularization map ϕ For $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha_1, \dots, \alpha_k \\ \beta_1, \dots, \beta_k \end{bmatrix} \in DWC$, real number $t \ge 0$ and complex number z with real part Re(z) < 0, we define

$$\phi\Big(\left[\begin{smallmatrix}\alpha\\\beta\end{smallmatrix}\right]\Big):=\phi\Big(\left[\begin{smallmatrix}\alpha\\\beta\end{smallmatrix}\right]\Big)(t,z):=\sum_{i_1<\dots< i_k}x_{i_1}^{\alpha_1}\cdots x_{i_k}^{\alpha_k}e^{(i_1+t)\beta_1z}\cdots e^{(i_k+t)\beta_kz},$$

which we call the regularization of the formal expression M_{α} in the direction β .

Theorem (L. Guo, H.Y. & B. Zhang, 2021) The assignment ϕ defines an algebra homomorphism

$$\phi: \mathcal{H}_{\mathrm{DWC}} \to \mathbf{LWQSym}[t][z^{-1}, z]].$$

If $\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ is in DWC and α is a left weak composition, then $\phi\Big(\begin{bmatrix} \alpha \\ \beta \end{bmatrix}\Big)$ is an element of **LWQSym**[t][[z]].

L. Guo, H. Yu and B. Zhang, Renormalization of quasisymmetric functions, arXiv:2012.11872.

▶ Step 1. (Renormalization of ϕ) The evaluation

$$Z\Big(\left[\begin{smallmatrix}\alpha\\\beta\end{smallmatrix}\right]\Big)=\phi_+\Big(\left[\begin{smallmatrix}\alpha\\\beta\end{smallmatrix}\right]\Big)\bigg|_{z=0}\in \mathrm{LWQSym}[t]$$

is called the **directional quasisymmetric function** of α in direction β .

▶ Step 1. (Renormalization of ϕ) The evaluation

$$Z\Big(\left[\begin{smallmatrix}\alpha\\\beta\end{smallmatrix}\right]\Big)=\phi_+\Big(\left[\begin{smallmatrix}\alpha\\\beta\end{smallmatrix}\right]\Big)\bigg|_{z=0}\in\mathbf{LWQSym}[t]$$

is called the **directional quasisymmetric function** of α in direction β .

Step 2. (Renormalization values) The renormalized monomial quasisymmetric function of a weak composition $\alpha = (\alpha_1, \dots, \alpha_k)$ is

$$M_{\alpha} = Z\Big(\left[egin{array}{c} lpha \ \delta^k \end{array}
ight]\Big),$$

where δ is a positive integers.

▶ Step 1. (Renormalization of ϕ) The evaluation

$$Z\Big(\left[\begin{smallmatrix}\alpha\\\beta\end{smallmatrix}\right]\Big)=\phi_+\Big(\left[\begin{smallmatrix}\alpha\\\beta\end{smallmatrix}\right]\Big)\bigg|_{z=0}\in\mathbf{LWQSym}[t]$$

is called the **directional quasisymmetric function** of α in direction β .

Step 2. (Renormalization values) The renormalized monomial quasisymmetric function of a weak composition $\alpha = (\alpha_1, \dots, \alpha_k)$ is

$$M_{\alpha} = Z(\begin{bmatrix} \alpha \\ \delta^k \end{bmatrix}),$$

where δ is a positive integers.

Example

$$\textit{M}_0 = -t - \frac{1}{2}, \quad \textit{M}_{(0,0)} = \frac{1}{2}\textit{t}^2 + \textit{t} + \frac{3}{8}, \quad \textit{M}_{(0,0,0)} = -\frac{1}{6}\textit{t}^3 - \frac{3}{4}\textit{t}^2 - \frac{23}{24}\textit{t} - \frac{5}{16}.$$

For any positive integer k, we have

$$M_{0^k} = \frac{\prod_{i=0}^{k-1} (M_0 - i)}{k!} = \frac{(-1)^k}{k!} \prod_{i=1}^k \left(t + i - \frac{1}{2}\right).$$

For any positive integer k, we have

$$M_{0^k} = \frac{\prod_{i=0}^{k-1} (M_0 - i)}{k!} = \frac{(-1)^k}{k!} \prod_{i=1}^k (t + i - \frac{1}{2}).$$

Let $\alpha=(\alpha_1,\ldots,\alpha_j,0^{k_\alpha})$ be a weak composition, where $\alpha_j\in\mathbb{P}$ and $k_\alpha\in\mathbb{N}$. Denote $\alpha'=(\alpha_1,\ldots,\alpha_{i-1})$. Then

$$M_{\alpha} = \sum_{p=0}^{k_{\alpha}} \frac{(-1)^{p} \prod_{i=1}^{k_{\alpha}-p} (M_{0} - \ell(\alpha) + i)}{(k_{\alpha} - p)!} M_{(\alpha' \coprod 0^{p}, \alpha_{j})}$$
$$= (-1)^{k_{\alpha}} \sum_{p=0}^{k_{\alpha}} \frac{\prod_{i=1}^{k_{\alpha}-p} (t + \ell(\alpha) - i + \frac{1}{2})}{(k_{\alpha} - p)!} M_{(\alpha' \coprod 0^{p}, \alpha_{j})}.$$

Renormalization of weak quasisymmetric functions

Let

RenQSym = span{
$$M_{\alpha} | \alpha \in \mathcal{WC}$$
}

whose elements will be called renormalized quasisymmetric functions.

Theorem (L. Guo, H.Y. & B. Zhang, 2021)

 $\mathsf{RenQSym} \cong \mathsf{LWQSym}[t] \cong \mathsf{RQSym}.$

Renormalization of weak quasisymmetric functions

Let

RenQSym = span{
$$M_{\alpha} | \alpha \in \mathcal{WC}$$
}

whose elements will be called renormalized quasisymmetric functions.

Theorem (L. Guo, H.Y. & B. Zhang, 2021)

 $\mathsf{RenQSym} \cong \mathsf{LWQSym}[t] \cong \mathsf{RQSym}.$

Thank you!