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Motivations

Preparation

o In this talk, k an algebraically closed field of characteristic zero.
@ All spaces and algebras are over k.
@ This talk is based on the following works:

(Joint with Ge Fan) A combinatorial identity and the finite dual
of infinite dihedral group algebra. Mathematika 67 (2021)
498-513.

(Joint with Kanggiao Li) The finite duals of affine prime regular
Hopf algebras of GK-dimension one, arXiv 2103.00495.
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A Larson-Radford’s result

o It is well-known that Larson-Radford (J. Algebra, 1988) proved
the following result:

Let H be a finite dimensional Hopf algebra, then H is semisimple if
and only if H* is semisimple.

@ A natural question is: How about the infinite dimensional case?
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A Larson-Radford’s result

@ Naively, the infinite dimensional analogue seems to be:

@ A Hopf algebra H has finite global dimension if and only if H*
has finite global dimension?

@ But H* has no dual Hopf algebra structure in general.

@ So a natural candidate for H* is H®, the finite dual of H.
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@ Takeuchi defined a quantum group as follows.

Definition

A quantum group G is defined to be a triple
G = (A7 U, < ) >)

where A and U are Hopf algebras, and ( , ) is a Hopf pairing on
U x A.
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A Takeuchi’s definition

@ Takeuchi defined a quantum group as follows.

Definition

A quantum group G is defined to be a triple
G = (A7 U, < ) >)

where A and U are Hopf algebras, and ( , ) is a Hopf pairing on
U x A.

@ A natural question is: When a Hopf algebra can give a quantum
group in the Takeuchi’s sense?
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Approach

@ Basic idea: From H to nondegenerate Hopf pairing:
H — (H,H*).
@ Raising many questions: Existence? Uniqueness?...

@ Lucky point: We know the classification of some
infinite-dimensional Hopf algebras, for example
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Motivations

Classification

Based on previous works, we already got a complete
classification about noetherian prime regular Hopf algebras of
GK-dim one:

Infinite dimensional Taft algebra 7' ;
Infinite dihedral group algebra kD ;
Generalized Liu’s algebras B(n,w,¥);
Hopf algebras D(m,d., ).

In this talk, we will determine the finite duals of these Hopf
algebras. From this, we test above questions.
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Finite Dual

o Let H be a Hopf algebra, the finite dual H® of H is defined by

H® :={f € H*|f(I) = 0,some ideal I s.t. dim(H/I) < co}.

@ A basic fact: H° is a Hopf algebra.

Finite dual and



For infinite dihedral group al v
For infinite dimensi aft alg Too(n,v, &)
“or generalized Liu alg

he Hopf algebra D(m, d

Determination of the finite duals

Some known examples

Let H; be the polynomial algebra kx|, A(x)=1®x+x® 1.
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Determination of the finite duals

Some known examples

Let H; be the polynomial algebra k[x], A(x) =1®x+x® 1. Then
we have
H,° = klx] ® kG

where G = (k, +).

Example

Let H, be the infinite cyclic group algebra k[g, g~ '], A(g) =g®g.
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Determination of the finite duals

For tt

Some known examples

Let H; be the polynomial algebra k[x], A(x) =1®x+x® 1. Then
we have
H,° = klx] ® kG

where G = (k, +).

Let H, be the infinite cyclic group algebra k[g, g~ '], A(g) =g®g.
Then we have

Hy° =2 kx| @ kG
where G = (k*,-).
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Some known examples

@ There is a common point in above examples, that is, H is
commutative. Therefore H° is cocommutative and thus one can
apply Milnor-Moore’s Theorem.

Consider the quantum group U, (sly).
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For the Hopf algebra D(m, d, £)

Some known examples

@ There is a common point in above examples, that is, H is
commutative. Therefore H° is cocommutative and thus one can
apply Milnor-Moore’s Theorem.

Consider the quantum group Uy (sl,). Then we have

Uy (s1,)° = Oy (SLy)#kZ5 "

This is proved by Takeuchi in 1992.
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Determination of the finite duals

For the Hopf algebra D(m, d, £)

Some known examples

@ There is a common point in above examples, that is, H is
commutative. Therefore H° is cocommutative and thus one can
apply Milnor-Moore’s Theorem.

Consider the quantum group Uy (sl,). Then we have

Uy (s1,)° = Oy (SLy)#kZ5 "

This is proved by Takeuchi in 1992.

@ The key point of above example is that the category of
finite-dimensional representations of U,(sl,) is semisimple.
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Determination of the finite duals

Infinite dihedral group algebra kD,

@ By definition, the infinite dihedral group D, is generated by two
elements g and x satisfying

@ Note that kD, is not not commutative and thus (kDy )° is not
cocommutative.

Finite dual and



For infinite dihedral group algebr: oo
P . _ “or infinite dimensior i Too(n,v, &)
Determination of the finite duals 5 o . -

For the Hopf algebra D(m, d, £)

Infinite dihedral group algebra kD,

@ By definition, the infinite dihedral group D, is generated by two
elements g and x satisfying

@ Note that kD, is not not commutative and thus (kDy )° is not
cocommutative. Also, the category of finite-dimensional
representations of kD, is not semisimple.
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@ As an algebra, kDo is generated by £, ©, U for
A € k* =k \ {0} and subjects to the following relations

Finite dual and f pairing



For infinite dihedral group a '1lcebr‘1 kDoo

For infinite dime Ta Too(n,v, &)
For generalized Liu 3

For the Hopf algebra D(m, d, &)

Determination of the finite duals

The Hopf algebra kDo

@ As an algebra, kDo is generated by £, ©, U for
A € k* =k \ {0} and subjects to the following relations

Ed, = (I),\E, EV, = \IJ)\E, P, = 1,
D\ Wy, =Vy Py, =Uyn,, PNDPy, =P n,, PPN, =Dy,

for all A\, Ay, \p € k*.
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Determination of the finite duals

The Hopf algebra kD .-

The comultiplication, counit and the antipode are given by
A(E)=E®1+1 ®E,
A(Dy) = %(@ +1hy) © Py + %(% —U,) @ Py 1,
A(Ty) = %((I))\ + W) @ ¥y — %((I)/\ — Uy @ Wy,
e(E) =0, (@) =¢e(¥y) =1,
S(E) = —1E, S(Ba) = 5(Bys +Wy) 3 (83— W),

1 1
S(UA) = 5(@r1 +Px-1) = 5(2r — )

for \ € k*.
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Main result

With operations defined above, kDo is a Hopf algebra.
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Main result

With operations defined above, kDo is a Hopf algebra.

As Hopf algebras, we have

(KDoo )° 2 kD ogo.
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For the Hopf algebra D(m, ¢

Sketch of the proof: Generators

o Clearly, {g/x* | j € Z,k = 0, 1} is a basis of kDq.
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Sketch of the proof: Generators

e Clearly, {g/x* | j € Z,k = 0,1} is a basis of kDD... Denote its
dual basis by f; ;.
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Determination of the finite duals

Sketch of the proof: Generators

e Clearly, {g/x* | j € Z,k = 0,1} is a basis of kDD... Denote its
dual basis by f; ;.

o Construct:

e = Zi(f,',o +fi1) gk ],

ez
dri=> N(fio+fi1) : gfm N,
i€z
Py = Z)\[(ﬁ’o —fi1) g (=Y
i€’

for \ € k*.
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For infinite dimensional Taft A Too (1, v, &)
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Determination of the finite duals

Sketch of the proof: Generation property

e Key: As an algebra, (kD )° is generated by E, @ and V.
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Determination of the finite duals

Sketch of the proof: Generation property

e Key: As an algebra, (kD )° is generated by E, @ and V.

@ Define a map
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For infinite dihedral group a '1lcebr‘1 kDoo

For infinite dime Ta Too(n,v, &)
For generalized Liu 3

For the Hopf algebra D(m, d, &)

Determination of the finite duals

Sketch of the proof: Generation property

e Key: As an algebra, (kD )° is generated by E, @ and V.

@ Define a map
O: kDgoo — (E{DOO)O, E—e, ®\— oy, Uy — Yy, (/\ S ]k*)

which gives the desired isomorphism.
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Determination of the finite duals

Remarks

@ The link-indecomposable component (Montgomery’s sense)
containing 1 is the Hopf subalgebra generated by £, ¥ which
can be described as follows
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Determination of the finite duals

Remarks

@ The link-indecomposable component (Montgomery’s sense)
containing 1 is the Hopf subalgebra generated by £, ¥ which
can be described as follows

EV, = WE, U3 =1,
AE)=E®1+ ¥ ®FE, A(¥) =¥ ® V.
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For the Hopf algebra D(m, d, £)

Remarks

@ The link-indecomposable component (Montgomery’s sense)
containing 1 is the Hopf subalgebra generated by £, ¥ which
can be described as follows

EV, = WE, U3 =1,
AE)=E®1+ ¥ ®FE, A(¥) =¥ ® V.

@ This verifies the infinite-dimensional case of the theorem of
Larson-Radford.
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For the Hopf algebra D(m, d, £)

Remarks

@ The link-indecomposable component (Montgomery’s sense)
containing 1 is the Hopf subalgebra generated by £, ¥ which
can be described as follows

EV, = WE, U3 =1,
AE)=E®1+ ¥ ®FE, A(¥) =¥ ® V.

@ This verifies the infinite-dimensional case of the theorem of
Larson-Radford. In our subsequent computations, we will find
that the infinite-dimensional analogue of Larson-Radford’s
theorem is not always true.
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Determination of the finite duals

Infinite dimensional Taft algebra T (n, v, §)

o Let n be a positive integer, 0 < v < n — 1, and £ be a primitive
nth root of 1.
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For infinite dihedral
For infinite dimensi
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Determination of the finite duals

Infinite dimensional Taft algebra T (n, v, §)

o Let n be a positive integer, 0 < v < n — 1, and £ be a primitive
nth root of 1.

@ As an algebra, T (n,v, ) is generated by g and x with relations

n

g =1, xg=~Ex

Then Too(n, v, ) becomes a Hopf algebra with comultiplication,
counit and antipode given by

Alg)=g®g AX)=10x+x®g", g =1, x) =0,
S(g) =g""", S(x)=—-¢"g""x
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Determination of the finite duals

The Hopf algebra T..(n, v, )

e For simplicity we denote m := .
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The Hopf algebra Two(n, v, §)

e For simplicity we denote m := .

@ As an algebra, Toco (n, v, §) is generated by
7/)» W, E2v E,

for A € k and subjects to the following relations
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For infinite dthdI 11 group |] sebra kD
Determination of the finite duals

o (1,v,€)

For the Hopf algebr: 1[)uu d,§)

The Hopf algebra Tw.o (1, v, €)

e For simplicity we denote m : gcd(n ok

@ As an algebra, Toco (n, v, §) is generated by
7/)» W, E2v E,
for A € k and subjects to the following relations

VaPa = Vrn+as Yo=1, " =1, Ef' =0,
wihy = Yrw, EBw=wk, Ew=_{WwE,
Expy = YhEx, E\Y) = YaE, E1Ey = EQE,

for all A, A, A2 € k.
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Determination of the finite duals

The Hopf algebra Two(n, v, §)

The comultiplication, counit and the antipode are given by

Alw) =w QO w, A(E]):1®E] +E Quw,

m—1
AE)=10E+E,@w" + ZEgk] ® wkEEmfk]’

k=1
n/m—1 m—1
c=0 k=1
e(w)=ce) =1, e(E)) =¢c(Ey) =0, S(w)= w”_l,

n/m—1
S(El) = _g—vwn—lEl’ S(EZ) =—E, S(%\) = Z @ij)\g—"lfo-m

for A € k, where Egk] := EX/klg and o := Z”/m L g—tmey,im,
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Determination of the finite duals

Main result

With operations defined above, Tooo (n, v, &) is a Hopf algebra.
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For infinite dihedral group alge v
For infinite dimensional Taft algebra Tog (1, v, £)
For generalized Liu algebra ,w, )

For the Hopf algebra D(m, d, €)

Determination of the finite duals

Main result

With operations defined above, Tooo (n, v, &) is a Hopf algebra.

As Hopf algebras, we have

Too(na v, )o = TOO° (I’l, V, 5)
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Determination of the finite duals
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Determination of the finite duals

Remarks

@ The link-indecomposable component (Montgomery’s sense)
containing 1 is the Hopf subalgebra generated by w, E», F;
which can be described as follows
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Determination of the finite duals

Remarks

@ The link-indecomposable component (Montgomery’s sense)
containing 1 is the Hopf subalgebra generated by w, E», F;
which can be described as follows

w'=1, EI"'=0,
Ezw = OJEQ, Elw = ngEl, E1E2 = EZEI,
Alw)=w®w, A(E|) =1RE +E ®uw,

m—1
AE)=10E+Eow"+ Y EM @ WtE"H,
k=1
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@ The link-indecomposable component (Montgomery’s sense)
containing 1 is the Hopf subalgebra generated by w, E», F;
which can be described as follows

w'=1, EI"'=0,
Ezw = OJEQ, Elw = ngEl, E1E2 = EZEI,
Alw)=w®w, A(E|) =1RE +E ®uw,

m—1
AE)=10E+Eow"+ Y EM @ WtE"H,
k=1

@ It is not regular!
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Determination of the finite duals

Generalized Liu algebra B(n,w, )

o Let n and w be positive integers, and -y be a primitive nth root of
1.
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o Let n and w be positive integers, and -y be a primitive nth root of
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o As an algebra, B(n,w, ) is generated by x!, g and y with
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Determination of the finite duals

Generalized Liu algebra B(n, w, )

o Let n and w be positive integers, and -y be a primitive nth root of

1.
o As an algebra, B(n,w, ) is generated by x!, g and y with
relations
ol =x"x=1, xg=gx, xy=yn,
Y8 = 78Y,

YVi=1—-x=1-g".
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Determination of the finite duals

Generalized Liu algebra B(n,w, )

o Let n and w be positive integers, and -y be a primitive nth root of

1.
o As an algebra, B(n,w, ) is generated by x!, g and y with
relations
ol =x"x=1, xg=gx, xy=yn,
Y8 = 78Y,

Vi=1—-x=1-g"

Then B(n,w, ) becomes a Hopf algebra with comultiplication,
counit and antipode are given by

Ax) =x2x, Alg)=g®g AQ)=10y+y®g,
)=¢(g) =1, e(y) =0,
Sy =x"", Sg)=g", S =—-""¢""y.
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Determination of the finite duals

Main result

e Similarly, we construct a Hopf algebra B, (n,w, ), and prove
that

As Hopf algebras, we have

B(n,w,v)° = Bo(n,w, 7).
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Generators for B(n, w, 7)°
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For the Hopf algebra D(m, d, &)

Determination of the finite duals

Generators for B(n, w, 7)°

o {Xgy |0<i<w-—1,j€7Z,0<1<n~—1}isabasis of
B(n,w,).
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For infinite dihedral group algebra >

For infinite dimensional Taft A Too (1, v, &)
For generalized Liu algebra B(n, w, )

For the Hopf algebra D(m, d, &)

Determination of the finite duals

Generators for B(n, w, 7)°

o {xigh! |0<i<w-—1,j€7Z, 0<1<n—1}isabasis of
B(n,w,7).
@ Construct:

Finite dual and f pairing



Determination of the finite duals

For the Hopf algebra D(m, d, £)

Generators for B(n, w, 7)°

o {xXgh|0<i<w-—1,j€7Z,0<1<n—1}isabasis of
B(n,w,).
o Construct:
P . iyl
?4‘,//’)\$7)\% : ng,'yl — ()/7()/\'w' )\”,
E> :x’glyl — ()/70(; + ‘I];) E; :x’g’yl = 0y
for any A € k*, where A& and A denote arbitrary wth and nth
roots of \ respectively.
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For infinite dihe
L . _— For infinite dim
Determination of the finite duals " o
For gene

Generation for B(n, w, y)°

@ As an algebra, B(n,w,y)° is generated by L;“‘;/\L NE E> and E;
with relations

; 1

11 11, Yii=1, E{ =0,
(AFAF),(ATAD)
, , 1
10 =Y 1 1E, EW 1 1 :)\'Vl/) 1 1 Eq,
! )\M’AH )\wa11 ! )\w"An )\w,An

1
E\E, = EbE + ’;El

R S T

1 = 1
forall Aw, An ) AP, AT, A, A € k™.
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L . _— For infinite dime
Determination of the finite duals " »

For the Hopf algebra D(m, d, €)

Generation for B(n, w, y)°

The comultiplication, counit and the antipode are given by

A(E)) = 1 @E1 + E1 ® Y14,

A(Ez)_1@uzzszz@1—215["]@m/)l7 )
k=1 .
AWy W)= 1 @00 e T+ (1= B e vl g™,
k=1
eW1 1) =1 elBr) =e(E2) =0,
S(E\) = ="' Er, S(E2) =—Ez, S( 1 1) =t -1

Ab A T AT AT
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Determination of the finite duals

Remarks
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Remarks

@ The link-indecomposable component (Montgomery’s sense)
containing 1 is the Hopf subalgebra generated by v, ., E>, Ej.
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Determination of the finite duals

Remarks

@ The link-indecomposable component (Montgomery’s sense)
containing 1 is the Hopf subalgebra generated by v, ., E>, Ej.

@ It is not regular!
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For infinite dihedr:

For infinite dimensio

For generalized Liu alg

For the Hopf algebra D(m, d, &)

Determination of the finite duals

The Hopf algebra D(m, d, &)

@ Let n,d be positive integers such that (1 4+ m)d is even, and £ be
a primitive 2mth root of 1. Define w := md, v := £.
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L . - Too(n,v, &)
Determination of the finite duals $

For the ant 1lnebl aD(m,d, ‘)

The Hopf algebra D(m, d, &)

@ Let n,d be positive integers such that (1 4+ m)d is even, and £ be
a primitive 2mth root of 1. Define w := md, v := £.

@ As an algebra, D(m, d, &) is generated by
1 gy, ug,u1, -+, uy_1 with relations

ol =x"lr = 1, gx=xg, yx=xy,

yg=18y, Yy'=1-x"=1-g"
wix =x"uy, yup = gy = Euy, wg =v'x*gu,

where ¢; ;=1 — y_i_]xd and 0 <i<m—1, as well as:

Finite dual and f pairing
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Determination of the finite duals

The Hopf algebra D(m, d, &)

o JU+D _14m L
(—D)Fey 2 Ly iy oy g
(i+j<m-2)
LD _tdmy
uilj = (D)7 a2 Y
(tj=m—1)
L JUED _14m o
(1) ey Ly g P10 Py Mg
(i+j>m)

where ¢ ;=1 — 7" x?and 0 < i,j <m— 1.

Gong g Li Finite dual and Hopf pairing



For infinite dihedral <!

For infinite dimensi t alg oo (n, v, &)
For generalized Liu algebra B( )

For the Hopf algebra D(m, d, &)

Determination of the finite duals

Generators for D(m, d, £)°

o {Xghy xigu |0<i<w—1,j€Z 0<1<m— 1}isabasis
of D(m,d,§).
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For infinite dihedral group al D o

For infinite dime: F bra T'oo (1, v, &)
For generalized Liu 3

For the Hopf algebra D(m, d, &)

Determination of the finite duals

Generators for D(m, d, £)°

o {Xghy xigu |0<i<w—1,j€Z 0<1<m— 1}isabasis
of D(m,d,§).

@ Construct:

o x"gfyl'—>5l,0)\£>\% L xighy! 5 0 o
1oL ey ) 11 o iio,
Aw Am xlg/ull—)o Aw Am Xlglul'_>(5[,0)\“’)\m
i gl i J Yo/ [
— 0o(L + L = 071
By { KEY o0l ) g ) X8 BT
x'gup v 10(5 + 1) x'gup— =01

¢

for any A\ € k*, where Aw and A+ denote arbitrary wth and nth
roots of A respectively.
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For infinite dihedral group algebra kDD
—— . i For infinite dimensionz \ITm a
Determination of the finite duals o c ‘
For generalized Lit
For the Hopf algeb

X
Too(n,v, &)

Generation for D(m, d, £)°

As an algebra, D(m, d, £)° is generated by oy
with relations

C1 1C1 1 =¢ 1 1 1.1, X 1 1X
)\lu,'7AI”l )\2"”-/)\5” (AIWAW)’(AI”’A:I’”) )\lvd7A]”l A

1 =X 1 1 1
"A:;” ()\lul )\2 ) ()\l”A”l)’

e

1
C1 1x 1 1=x1 1C1 1 =0, E\E; = B2Ey + — (1,1 E1,
)\LU A”l )\zbd .’A‘.l” )\lu./'7>\ll” A;;,A} lA777 ’n ’

B2 s b = Qa s B BiGyg 4 = /\m( AsEL

—d 1
EzXﬁ’ﬁ:XA%?A%Ezs Eix, 1 =AW Amy W 1E1

Aw A\m
1

Gitxi=1, Ef' = (1= X

1 p L L 1 1
for Aw, A AP AT A, A € k.
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For infinite dir

For generalized Li 2

For the Hopf algebra D(m, d, &)

Determination of the finite duals

Generation for D(m, d, £)°

@ Denote Egk} = E’l‘ /k!, for 1 < k < m — 1. The comultiplication
is given by:

A(E)) = 1QE +E ®(CGy+EXin),
AE) = (Ca—-—x11)0E+E®]

m—1
+ Z(CLI - Xl,l)Egk] X (Clﬁ + é‘Xl”Y)kE[lmfk]'
k=1

@ We remark that {11 — x1,1 = (1,4 + &x1,4)" Also,

A(Cl,’y + £X17’y) = (Cl,'y + £X17’y) @ (Cl,'y + £X17’y)'

Finite dual and Hopf pairing
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For generalized Liu
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X
ora T (1, v, §)

Generation for D(m, d, £)°

Suppose ()\5)‘1 = \in. Then

Aw Am
n—1 i
) k —
- gAL,A$§CCALAL+(]/\)Zle'AIE CinEY

—m)d/2 ]
(1= e A m

1 — ~
3L o,

£ m k])
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For infinite dihedral group al D o

For infinite dime g ora T (1, v, §)
For generalized Liu 3

For the Hopf algebr

Determination of the finite duals

Generation for D(m, d, £)°

Suppose (/\i)d = . Then

AW7A% A%)\% ®XA A/u +X)\vu )\I:l @ C)\ Am
I m—1 I
S A M) (1= AR AR (1=
k=
[k] k k]
OBl ® NS X\, E E/"
m—1

M—K— L m— m—
I B A e S A

,EEI{] ® C)\, Cl . m k] }
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For infinite dihedr:

For infinite dimensio

For generalized Liu alg
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Determination of the finite duals

Generation for D(m, d, £)°

@ The coproduct on C}\ 1k for arbitrary )\i and )ﬁ is defined as

A(¢

d
AG NG

1 d .. .. . .
such that A\m = \w~*. Similar definition is given for Xy 4 k-

JA(C1 + €x1,4)F, where k is a non-negative integer

Finite dual and
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For generalized Liu
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Generation for D(m, d, £)°

@ The coproduct on C}\ 1k for arbitrary )\i and )ﬁ is defined as
A((/\L N JA(C1 + €x1,4)F, where k is a non-negative integer
such that \n = )\%fyk . Similar definition is given for X, 4

1.
7>\M
@ The counit and antipode:

e(Crp) =1 el 1) =0 e(Br) =e(E2) =0.

S(El) = _’771((1,7*1 + 571X1,7*1)E17

1—m
S(Ez) = =CiiEr + x1,1E2 + o XL

w Am

S(X}\&)\&)Z/\ w x.1 1 when (/\$>d:)\ﬁ.
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Determination of the finite duals

Remarks

@ The link-indecomposable component (Montgomery’s sense)
containing 1 is the Hopf subalgebra generated by

Cl,”,’v levaZ',El-
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For infinite dim:

For generalized Liu alg

For the Hopf algebra D(m, d, &)

Determination of the finite duals

Remarks

@ The link-indecomposable component (Montgomery’s sense)
containing 1 is the Hopf subalgebra generated by

Cl,”,’v X1,v5 EZ: El-
o Itis not regular!
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Outline

@ Some consequences
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Some consequences

Direct consequences

@ Let H be a prime regular Hopf algebra of GK-dim one and H*®
the link-indecomposable component containing 1 of H®.
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Some consequences

Direct consequences

@ Let H be a prime regular Hopf algebra of GK-dim one and H*®
the link-indecomposable component containing 1 of H°.Then we
have

(1) The Hopf algebra H®* has GK-dimension one.

(2) Hopfalgebras (kD,)®, Too(n,v,&)®, B(n,w,v)® and D(m,d,&)* are
all pointed.

(3) The Hopf algebra (kD,)® is regular while To (n, v, €)®, B(n,w,y)®
and D(m,d, €)® are not when n,m > 2.

Finite dual and Hopf pairing



Some consequences

Remarks

e Naturally, (H, H®) is a nondegenerate Hopf pairing and thus a
quantum group in the Takeuchi’s sense.
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@ H* is “unique” in the following sense:
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Remarks

e Naturally, (H, H®) is a nondegenerate Hopf pairing and thus a
quantum group in the Takeuchi’s sense.

@ H* is “unique” in the following sense: H*® has the same GK-dim
as H and is minimal under containing relation.
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Some consequences

Remarks

e Naturally, (H, H®) is a nondegenerate Hopf pairing and thus a
quantum group in the Takeuchi’s sense.

@ H* is “unique” in the following sense: H*® has the same GK-dim
as H and is minimal under containing relation.This might be a
version negating the semisimplicity result by Larson and
Radford in infinite-dimensional cases.
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Some consequences

Remarks

e Naturally, (H, H®) is a nondegenerate Hopf pairing and thus a
quantum group in the Takeuchi’s sense.

@ H* is “unique” in the following sense: H*® has the same GK-dim
as H and is minimal under containing relation.This might be a
version negating the semisimplicity result by Larson and
Radford in infinite-dimensional cases.

e For a prime regular Hopf algebra H of GK-dim one, one can find
two nondegenerate Hopf pairings (H,H;), (H, H,) with
H| % H,.

Gongxiang Li Finite dual and Hopf pairing
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Questions

@ We pose several questions as follows:
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@ We pose several questions as follows:

@ For a general infinite-dimensional Hopf algebra H which is
residually finite-dimensional, when does a minimal Hopf algebra
H* forming a non-degenerate Hopf pairing over H exist?
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Some consequences

Questions

@ We pose several questions as follows:

@ For a general infinite-dimensional Hopf algebra H which is
residually finite-dimensional, when does a minimal Hopf algebra
H* forming a non-degenerate Hopf pairing over H exist?

@ When are such minimal Hopf algebras H® unique and of the
same GK-dimensions with H?
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Some consequences

Questions

@ We pose several questions as follows:

@ For a general infinite-dimensional Hopf algebra H which is
residually finite-dimensional, when does a minimal Hopf algebra
H* forming a non-degenerate Hopf pairing over H exist?

@ When are such minimal Hopf algebras H® unique and of the
same GK-dimensions with H?

e What can you say something about the Rep-(H, H®)?

Gongxiang Li Finite dual and Hopf pairing



Some consequences

@ Thanks for your attention!

Finite dual and f pairing
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