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Preparation

In this talk, k an algebraically closed field of characteristic zero.

All spaces and algebras are over k.

This talk is based on the following works:

(Joint with Ge Fan) A combinatorial identity and the finite dual
of infinite dihedral group algebra. Mathematika 67 (2021)
498-513.
(Joint with Kangqiao Li) The finite duals of affine prime regular
Hopf algebras of GK-dimension one, arXiv 2103.00495.
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Motivation

To understand infinite dimensional Hopf algebras better!

The standpoint of our understanding: dual.
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A Larson-Radford’s result

It is well-known that Larson-Radford (J. Algebra, 1988) proved
the following result:

Theorem
Let H be a finite dimensional Hopf algebra, then H is semisimple if
and only if H∗ is semisimple.

A natural question is: How about the infinite dimensional case?
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A Larson-Radford’s result

Naively, the infinite dimensional analogue seems to be:

A Hopf algebra H has finite global dimension if and only if H∗

has finite global dimension?

But H∗ has no dual Hopf algebra structure in general.

So a natural candidate for H∗ is H◦, the finite dual of H.
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A Takeuchi’s definition

Takeuchi defined a quantum group as follows.

Definition
A quantum group G is defined to be a triple

G = (A,U, 〈 , 〉)

where A and U are Hopf algebras, and 〈 , 〉 is a Hopf pairing on
U × A.

A natural question is: When a Hopf algebra can give a quantum
group in the Takeuchi’s sense?
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Approach

Basic idea: From H to nondegenerate Hopf pairing:

H → (H,H•).

Raising many questions: Existence? Uniqueness?...

Lucky point: We know the classification of some
infinite-dimensional Hopf algebras, for example
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Classification

Based on previous works, we already got a complete
classification about noetherian prime regular Hopf algebras of
GK-dim one:

Infinite dimensional Taft algebra T∞ ;

Infinite dihedral group algebra kD∞;

Generalized Liu’s algebras B(n, ω, γ);

Hopf algebras D(m, d, ξ).

In this talk, we will determine the finite duals of these Hopf
algebras. From this, we test above questions.
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Finite Dual

Let H be a Hopf algebra, the finite dual H◦ of H is defined by

H◦ := {f ∈ H∗|f (I) = 0, some ideal I s.t. dim(H/I) <∞}.

A basic fact: H◦ is a Hopf algebra.
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Some known examples

Example

Let H1 be the polynomial algebra k[x], ∆(x) = 1⊗ x + x⊗ 1. Then
we have

H1
◦ ∼= k[x]⊗ kG

where G = (k,+).

Example

Let H2 be the infinite cyclic group algebra k[g, g−1], ∆(g) = g⊗ g.
Then we have

H2
◦ ∼= k[x]⊗ kG

where G = (k∗, ·).
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Some known examples

There is a common point in above examples, that is, H is
commutative. Therefore H◦ is cocommutative and thus one can
apply Milnor-Moore’s Theorem.

Example

Consider the quantum group Uq(sln). Then we have

Uq(sln)◦ ∼= Oq(SLn)#kZn−1
2 .

This is proved by Takeuchi in 1992.

The key point of above example is that the category of
finite-dimensional representations of Uq(sln) is semisimple.
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Infinite dihedral group algebra kD∞

By definition, the infinite dihedral group D∞ is generated by two
elements g and x satisfying

x2 = 1, xgx = g−1.

Note that kD∞ is not not commutative and thus (kD∞)◦ is not
cocommutative. Also, the category of finite-dimensional
representations of kD∞ is not semisimple.
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The Hopf algebra kD∞◦

As an algebra, kD∞◦ is generated by E,Φλ,Ψλ for
λ ∈ k∗ = k \ {0} and subjects to the following relations

EΦλ = ΦλE, EΨλ = ΨλE, Φ1 = 1,

Φλ1Ψλ2 = Ψλ1Φλ2 = Ψλ1λ2 , Φλ1Φλ2 = Φλ1λ2 , Ψλ1Ψλ2 = Φλ1λ2

for all λ, λ1, λ2 ∈ k∗.
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The Hopf algebra kD∞◦

The comultiplication, counit and the antipode are given by
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1
2
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1
2
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1
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Main result

Lemma
With operations defined above, kD∞◦ is a Hopf algebra.

Theorem
As Hopf algebras, we have

(kD∞)◦ ∼= kD∞◦ .
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Some consequences

For infinite dihedral group algebra kD∞
For infinite dimensional Taft algebra T∞(n, v, ξ)
For generalized Liu algebra B(n, ω, γ)
For the Hopf algebra D(m, d, ξ)

Sketch of the proof: Generators

Clearly, {gjxk | j ∈ Z, k = 0, 1} is a basis of kD∞. Denote its
dual basis by fj,k.

Construct:

e :=
∑
i∈Z

i(fi,0 + fi,1) : gjxk 7→ j,

φλ :=
∑
i∈Z

λi(fi,0 + fi,1) : gjxk 7→ λj,

ψλ :=
∑
i∈Z

λi(fi,0 − fi,1) : gjxk 7→ (−1)kλj

for λ ∈ k∗.
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For infinite dihedral group algebra kD∞
For infinite dimensional Taft algebra T∞(n, v, ξ)
For generalized Liu algebra B(n, ω, γ)
For the Hopf algebra D(m, d, ξ)

Sketch of the proof: Generation property

Key: As an algebra, (kD∞)◦ is generated by E,Φλ and Ψλ.

Define a map

Θ: kD∞◦ → (kD∞)◦, E 7→ e, Φλ 7→ φλ, Ψλ 7→ ψλ, (λ ∈ k∗)

which gives the desired isomorphism.

Gongxiang Liu Finite dual and Hopf pairing



Motivations
Determination of the finite duals

Some consequences

For infinite dihedral group algebra kD∞
For infinite dimensional Taft algebra T∞(n, v, ξ)
For generalized Liu algebra B(n, ω, γ)
For the Hopf algebra D(m, d, ξ)

Sketch of the proof: Generation property

Key: As an algebra, (kD∞)◦ is generated by E,Φλ and Ψλ.

Define a map

Θ: kD∞◦ → (kD∞)◦, E 7→ e, Φλ 7→ φλ, Ψλ 7→ ψλ, (λ ∈ k∗)

which gives the desired isomorphism.

Gongxiang Liu Finite dual and Hopf pairing



Motivations
Determination of the finite duals

Some consequences

For infinite dihedral group algebra kD∞
For infinite dimensional Taft algebra T∞(n, v, ξ)
For generalized Liu algebra B(n, ω, γ)
For the Hopf algebra D(m, d, ξ)

Sketch of the proof: Generation property

Key: As an algebra, (kD∞)◦ is generated by E,Φλ and Ψλ.

Define a map

Θ: kD∞◦ → (kD∞)◦, E 7→ e, Φλ 7→ φλ, Ψλ 7→ ψλ, (λ ∈ k∗)

which gives the desired isomorphism.

Gongxiang Liu Finite dual and Hopf pairing



Motivations
Determination of the finite duals

Some consequences

For infinite dihedral group algebra kD∞
For infinite dimensional Taft algebra T∞(n, v, ξ)
For generalized Liu algebra B(n, ω, γ)
For the Hopf algebra D(m, d, ξ)

Sketch of the proof: Generation property

Key: As an algebra, (kD∞)◦ is generated by E,Φλ and Ψλ.

Define a map

Θ: kD∞◦ → (kD∞)◦, E 7→ e, Φλ 7→ φλ, Ψλ 7→ ψλ, (λ ∈ k∗)

which gives the desired isomorphism.

Gongxiang Liu Finite dual and Hopf pairing
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Determination of the finite duals

Some consequences

For infinite dihedral group algebra kD∞
For infinite dimensional Taft algebra T∞(n, v, ξ)
For generalized Liu algebra B(n, ω, γ)
For the Hopf algebra D(m, d, ξ)

Remarks

The link-indecomposable component (Montgomery’s sense)
containing 1 is the Hopf subalgebra generated by E,Ψ1 which
can be described as follows

EΨ1 = Ψ1E, Ψ2
1 = 1,

∆(E) = E ⊗ 1 + Ψ1 ⊗ E, ∆(Ψ1) = Ψ1 ⊗Ψ1.

This verifies the infinite-dimensional case of the theorem of
Larson-Radford. In our subsequent computations, we will find
that the infinite-dimensional analogue of Larson-Radford’s
theorem is not always true.
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For infinite dihedral group algebra kD∞
For infinite dimensional Taft algebra T∞(n, v, ξ)
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Infinite dimensional Taft algebra T∞(n, v, ξ)

Let n be a positive integer, 0 ≤ v ≤ n− 1, and ξ be a primitive
nth root of 1.

As an algebra, T∞(n, v, ξ) is generated by g and x with relations

gn = 1, xg = ξgx.

Then T∞(n, v, ξ) becomes a Hopf algebra with comultiplication,
counit and antipode given by

∆(g) = g⊗ g, ∆(x) = 1⊗ x + x⊗ gv, ε(g) = 1, ε(x) = 0,

S(g) = gn−1, S(x) = −ξ−vgn−vx.
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The Hopf algebra T∞◦(n, v, ξ)

For simplicity we denote m := n
gcd(n,v) .

As an algebra, T∞◦(n, v, ξ) is generated by

ψλ, ω, E2, E1

for λ ∈ k and subjects to the following relations

ψλ1ψλ2 = ψλ1+λ2 , ψ0 = 1, ωn = 1, Em
1 = 0,

ωψλ = ψλω, E2ω = ωE2, E1ω = ξvωE1,

E2ψλ = ψλE2, E1ψλ = ψλE1, E1E2 = E2E1

for all λ, λ1, λ2 ∈ k.
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The Hopf algebra T∞◦(n, v, ξ)

The comultiplication, counit and the antipode are given by

∆(ω) = ω ⊗ ω, ∆(E1) = 1⊗ E1 + E1 ⊗ ω,

∆(E2) = 1⊗ E2 + E2 ⊗ ωm +

m−1∑
k=1

E[k]
1 ⊗ ω

kE[m−k]
1 ,

∆(ψλ) =

n/m−1∑
c=0

(ψλξmc ⊗ ψλσc)(1⊗ 1 + λ

m−1∑
k=1

E[k]
1 ⊗ ω

kE[m−k]
1 ),

ε(ω) = ε(ψλ) = 1, ε(E1) = ε(E2) = 0, S(ω) = ωn−1,

S(E1) = −ξ−vωn−1E1, S(E2) = −E2, S(ψλ) =

n/m−1∑
c=0

ψ−λξ−mcσc,

for λ ∈ k, where E[k]
1 := Ek

1/k!ξv and σc := m
n

∑n/m−1
l=0 ξ−lmcωlm.
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Some consequences

For infinite dihedral group algebra kD∞
For infinite dimensional Taft algebra T∞(n, v, ξ)
For generalized Liu algebra B(n, ω, γ)
For the Hopf algebra D(m, d, ξ)

Main result

Lemma
With operations defined above, T∞◦(n, v, ξ) is a Hopf algebra.

Theorem
As Hopf algebras, we have

T∞(n, v, ξ)◦ ∼= T∞◦(n, v, ξ).
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Some consequences

For infinite dihedral group algebra kD∞
For infinite dimensional Taft algebra T∞(n, v, ξ)
For generalized Liu algebra B(n, ω, γ)
For the Hopf algebra D(m, d, ξ)

Remarks

The link-indecomposable component (Montgomery’s sense)
containing 1 is the Hopf subalgebra generated by ω,E2,E1
which can be described as follows

ωn = 1, Em
1 = 0,

E2ω = ωE2, E1ω = ξvωE1, E1E2 = E2E1,

∆(ω) = ω ⊗ ω, ∆(E1) = 1⊗ E1 + E1 ⊗ ω,

∆(E2) = 1⊗ E2 + E2 ⊗ ωm +

m−1∑
k=1

E[k]
1 ⊗ ω

kE[m−k]
1 .

It is not regular!
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Generalized Liu algebra B(n, ω, γ)

Let n and ω be positive integers, and γ be a primitive nth root of
1.
As an algebra, B(n, ω, γ) is generated by x±1, g and y with
relations 

xx−1 = x−1x = 1, xg = gx, xy = yx,
yg = γgy,
yn = 1− xω = 1− gn.

Then B(n, ω, γ) becomes a Hopf algebra with comultiplication,
counit and antipode are given by

∆(x) = x⊗ x, ∆(g) = g⊗ g, ∆(y) = 1⊗ y + y⊗ g,

ε(x) = ε(g) = 1, ε(y) = 0,

S(x) = x−1, S(g) = g−1, S(y) = −γ−1g−1y.
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Main result

Similarly, we construct a Hopf algebra B◦(n, ω, γ), and prove
that

Theorem
As Hopf algebras, we have

B(n, ω, γ)◦ ∼= B◦(n, ω, γ).
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Generators for B(n, ω, γ)◦

{xigjyl | 0 ≤ i ≤ ω − 1, j ∈ Z, 0 ≤ l ≤ n− 1} is a basis of
B(n, ω, γ).

Construct:

ψ
λ

1
ω ,λ

1
n

: xigjyl 7→ δl,0λ
i
ωλ

j
n ,

E2 : xigjyl 7→ δl,0(
i
ω

+
j
n

), E1 : xigjyl 7→ δl,1

for any λ ∈ k∗, where λ
1
ω and λ

1
n denote arbitrary ωth and nth

roots of λ respectively.
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Generation for B(n, ω, γ)◦

As an algebra, B(n, ω, γ)◦ is generated by ψ
λ

1
ω ,λ

1
n
, E2 and E1

with relations

ψ
λ

1
ω
1 ,λ

1
n
1

ψ
λ

1
ω
2 ,λ

1
n
2

= ψ
(λ

1
ω
1 λ

1
ω
2 ),(λ

1
n
1 λ

1
n
2 )
, ψ1,1 = 1, En

1 = 0,

E2ψ
λ

1
ω ,λ

1
n

= ψ
λ

1
ω ,λ

1
n
E2, E1ψ

λ
1
ω ,λ

1
n

= λ
1
nψ

λ
1
ω ,λ

1
n
E1,

E1E2 = E2E1 +
1
n

E1

for all λ
1
ω , λ

1
n , λ

1
ω
1 , λ

1
n
1 , λ

1
ω
2 , λ

1
n
2 ∈ k∗.
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Generation for B(n, ω, γ)◦

The comultiplication, counit and the antipode are given by

∆(E1) = 1⊗ E1 + E1 ⊗ ψ1,γ ,

∆(E2) = 1⊗ E2 + E2 ⊗ 1−
n−1∑
k=1

E[k]
1 ⊗ ψ

k
1,γE[n−k]

1 ,

∆(ψ
λ

1
ω ,λ

1
n
) = (ψ

λ
1
ω ,λ

1
n
⊗ ψ

λ
1
ω ,λ

1
n
)(1⊗ 1 + (1− λ)

n−1∑
k=1

E[k]
1 ⊗ ψ

k
1,γE[n−k]

1 ),

ε(ψ
λ

1
ω ,λ

1
n
) = 1, ε(E1) = ε(E2) = 0,

S(E1) = −γn−1ψn−1
1,γ E1, S(E2) = −E2, S(ψ

λ
1
ω ,λ

1
n
) = ψ

λ
−1
ω ,λ

−1
n

for λ
1
ω , λ

1
n ∈ k∗, where E[k]

1 := Ek
1/k!ξ for 1 ≤ k ≤ n− 1.
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Remarks

The link-indecomposable component (Montgomery’s sense)
containing 1 is the Hopf subalgebra generated by ψ1,γ ,E2,E1.

It is not regular!
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The Hopf algebra D(m, d, ξ)

Let n, d be positive integers such that (1 + m)d is even, and ξ be
a primitive 2mth root of 1. Define ω := md, γ := ξ2.

As an algebra, D(m, d, ξ) is generated by
x±1, g, y, u0, u1, · · · , um−1 with relations

xx−1 = x−1x = 1, gx = xg, yx = xy,

yg = γgy, ym = 1− xw = 1− gm,

uix = x−1ui, yui = φiui+1 = ξxduiy, uig = γix−2dgui,

where φi := 1− γ−i−1xd and 0 ≤ i ≤ m− 1, as well as:
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The Hopf algebra D(m, d, ξ)

uiuj =



(−1)−jξ−jγ
j(j+1)

2 1
m x−

1+m
2 dφiφi+1 · · ·φm−2−jyi+jg

(i + j ≤ m− 2)

(−1)−jξ−jγ
j(j+1)

2 1
m x−

1+m
2 dyi+jg

(i + j = m− 1)

(−1)−jξ−jγ
j(j+1)

2 1
m x−

1+m
2 dφi · · ·φm−1φ0 · · ·φm−2−jyi+j−mg

(i + j ≥ m)

where φi := 1− γ−i−1xd and 0 ≤ i, j ≤ m− 1.
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Generators for D(m, d, ξ)◦

{xigjyl, xigjul | 0 ≤ i ≤ ω − 1, j ∈ Z, 0 ≤ l ≤ m− 1} is a basis
of D(m, d, ξ).

Construct:

ζ
λ

1
ω ,λ

1
m

:

{
xigjyl 7→ δl,0λ

i
ωλ

j
m

xigjul 7→ 0
, χ

λ
1
ω ,λ

1
m

:

{
xigjyl 7→ 0
xigjul 7→ δl,0λ

i
ωλ

j
m
,

E2 :

{
xigjyl 7→ δl,0( i

ω + j
m)

xigjul 7→ δl,0( i
ω + j

m)
, E1 :

{
xigjyl 7→ δl,1

xigjul 7→ ξ
1−γ−1 δl,1

,

for any λ ∈ k∗, where λ
1
ω and λ

1
n denote arbitrary ωth and nth

roots of λ respectively.
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As an algebra, D(m, d, ξ)◦ is generated by ζ
λ

1
ω ,λ

1
n
, χ

λ
1
ω ,λ

1
n
, E2, E1

with relations

ζ
λ

1
ω
1 ,λ

1
m
1

ζ
λ

1
ω
2 ,λ

1
m
2

= ζ
(λ

1
ω
1 λ

1
ω
2 ),(λ

1
m
1 λ

1
m
2 )
, χ

λ
1
ω
1 ,λ

1
m
1

χ
λ

1
ω
2 ,λ

1
m
2

= χ
(λ

1
ω
1 λ

1
ω
2 ),(λ

1
m
1 λ

1
m
2 )
,

ζ
λ

1
ω
1 ,λ

1
m
1

χ
λ

1
ω
2 ,λ

1
m
2

= χ
λ

1
ω
1 ,λ

1
m
1

ζ
λ

1
ω
2 ,λ

1
m
2

= 0, E1E2 = E2E1 +
1
m
ζ1,1E1,

E2ζ
λ

1
ω ,λ

1
m

= ζ
λ

1
ω ,λ

1
m

E2, E1ζ
λ

1
ω ,λ

1
m

= λ
1
m ζ
λ

1
ω ,λ

1
m

E1,

E2χ
λ

1
ω ,λ

1
m

= χ
λ

1
ω ,λ

1
m

E2, E1χ
λ

1
ω ,λ

1
m

= λ
−d
ω λ

1
mχ

λ
1
ω ,λ

1
m

E1,

ζ1,1 + χ1,1 = 1, Em
1 =

1
(1− γ)mχ1,1,

for λ
1
ω , λ

1
m , λ

1
ω
1 , λ

1
m
1 , λ

1
ω
2 , λ

1
m
2 ∈ k∗.
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Generation for D(m, d, ξ)◦

Denote E[k]
1 := Ek

1/k!γ for 1 ≤ k ≤ m− 1. The comultiplication
is given by:

∆(E1) = 1⊗ E1 + E1 ⊗ (ζ1,γ + ξχ1,γ),

∆(E2) = (ζ1,1 − χ1,1)⊗ E2 + E2 ⊗ 1

+

m−1∑
k=1

(ζ1,1 − χ1,1)E[k]
1 ⊗ (ζ1,γ + ξχ1,γ)kE[m−k]

1 .

We remark that ζ1,1 − χ1,1 = (ζ1,γ + ξχ1,γ)m. Also,

∆(ζ1,γ + ξχ1,γ) = (ζ1,γ + ξχ1,γ)⊗ (ζ1,γ + ξχ1,γ).
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Generation for D(m, d, ξ)◦

Suppose (λ
1
ω )d = λ

1
m . Then

∆(ζ
λ

1
ω ,λ

1
m

)

= ζ
λ

1
ω ,λ

1
m
⊗ ζ

λ
1
ω ,λ

1
m

+ (1− λ)

n−1∑
k=1

ζ
λ

1
ω ,λ

1
m

E[k]
1 ⊗ ζλ 1

ω ,λ
1
m
ζk

1,γE[n−k]
1

+(1− λ)λ
(1−m)d/2

ω (
1/m

1− λ
1
m

χ
λ

1
ω ,λ

1
m
⊗ χ

λ
−1
ω ,λ

−1
m

+

m−1∑
k=1

1− γ−k

1− γ−kλ
1
m

χ
λ

1
ω ,λ

1
m

E[k]
1 ⊗ χλ−1

ω ,λ
−1
m
ξkχk

1,γE[m−k]
1 ).
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Generation for D(m, d, ξ)◦

Suppose (λ
1
ω )d = λ

1
m . Then

∆(χ
λ

1
ω ,λ

1
m

) = ζ
λ

1
ω ,λ

1
m
⊗ χ

λ
1
ω ,λ

1
m

+ χ
λ

1
ω ,λ

1
m
⊗ ζ

λ
1
ω ,λ

1
m

−(1− λ
1
m )[

m−1∑
k=1

(1− γλ
1
m ) · · · (1− γk−1λ

1
m )(1− γk) · · · (1− γm−1)

ζ
λ

1
ω ,λ

1
m

E[k]
1 ⊗ χλ 1

ω ,λ
1
m
ξkχk

1,γE[m−k]
1

+

m−1∑
k=1

λ
k
m−1(1− γλ

1
m ) · · · (1− γm−k−1λ

1
m )(1− γm−k) · · · (1− γm−1)

χ
λ

1
ω ,λ

1
m

E[k]
1 ⊗ ζλ 1

ω ,λ
1
m
ζk

1,γE[m−k]
1 ].
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Generation for D(m, d, ξ)◦

The coproduct on ζ
λ

1
ω ,λ

1
m

for arbitrary λ
1
ω and λ

1
m is defined as

∆(ζ
λ

1
ω ,λ

d
ω

)∆(ζ1,γ + ξχ1,γ)k, where k is a non-negative integer

such that λ
1
m = λ

d
ω γk. Similar definition is given for χ

λ
1
ω ,λ

1
m

.

The counit and antipode:

ε(ζ
λ

1
ω ,λ

1
m

) = 1, ε(χ
λ

1
ω ,λ

1
m

) = 0, ε(E1) = ε(E2) = 0.

S(E1) = −γ−1(ζ1,γ−1 + ξ−1χ1,γ−1)E1,

S(E2) = −ζ1,1E2 + χ1,1E2 +
1− m

2m
χ1,1,

S(ζ
λ

1
ω ,λ

1
m

) = ζ
λ

−1
ω ,λ

−1
m
,

S(χ
λ

1
ω ,λ

1
m

) = λ
(1−m)d/2

ω χ
λ

1
ω ,λ

1
m

when (λ
1
ω )d = λ

1
m .
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Generation for D(m, d, ξ)◦

The coproduct on ζ
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1
ω ,λ
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∆(ζ
λ

1
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1
ω ,λ

1
m
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The counit and antipode:
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1
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For infinite dihedral group algebra kD∞
For infinite dimensional Taft algebra T∞(n, v, ξ)
For generalized Liu algebra B(n, ω, γ)
For the Hopf algebra D(m, d, ξ)

Remarks

The link-indecomposable component (Montgomery’s sense)
containing 1 is the Hopf subalgebra generated by
ζ1,γ , χ1,γ ,E2,E1.

It is not regular!
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Direct consequences

Let H be a prime regular Hopf algebra of GK-dim one and H•

the link-indecomposable component containing 1 of H◦.Then we
have

Proposition

(1) The Hopf algebra H• has GK-dimension one.

(2) Hopf algebras (kD∞)•, T∞(n, v, ξ)•, B(n, ω, γ)• and D(m, d, ξ)• are
all pointed.

(3) The Hopf algebra (kD∞)• is regular while T∞(n, v, ξ)•, B(n, ω, γ)•

and D(m, d, ξ)• are not when n,m ≥ 2.
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Remarks

Naturally, (H,H•) is a nondegenerate Hopf pairing and thus a
quantum group in the Takeuchi’s sense.

H• is “unique" in the following sense: H• has the same GK-dim
as H and is minimal under containing relation.This might be a
version negating the semisimplicity result by Larson and
Radford in infinite-dimensional cases.

For a prime regular Hopf algebra H of GK-dim one, one can find
two nondegenerate Hopf pairings (H,H1), (H,H2) with
H1 6∼= H2.
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Questions

We pose several questions as follows:

For a general infinite-dimensional Hopf algebra H which is
residually finite-dimensional, when does a minimal Hopf algebra
H• forming a non-degenerate Hopf pairing over H exist?

When are such minimal Hopf algebras H• unique and of the
same GK-dimensions with H?

What can you say something about the Rep-(H,H•)?
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Thanks for your attention!
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