Finite dual and Hopf pairing

Gongxiang Liu

Department of Mathematics, Nanjing University

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Motivations

2 Determination of finite duals

Some consequences

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Motivations

2 Determination of finite duals

Some consequences

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Motivations

- 2 Determination of finite duals
- Some consequences

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Outline

1 Motivations

Determination of the finite duals

- For infinite dihedral group algebra $k\mathbb{D}_{\infty}$
- For infinite dimensional Taft algebra $T_{\infty}(n, v, \xi)$
- For generalized Liu algebra $B(n, \omega, \gamma)$
- For the Hopf algebra $D(m, d, \xi)$

3 Some consequences

- ∢ ⊒ →

Preparation

- In this talk, k an algebraically closed field of characteristic zero.
- All spaces and algebras are over k.
- This talk is based on the following works:

(Joint with Ge Fan) A combinatorial identity and the finite dual of infinite dihedral group algebra. Mathematika 67 (2021) 498-513.

(Joint with Kangqiao Li) The finite duals of affine prime regular Hopf algebras of GK-dimension one, arXiv 2103.00495.

/□ ▶ ▲ 三 ▶ ▲

Preparation

- In this talk, k an algebraically closed field of characteristic zero.
- All spaces and algebras are over k.
- This talk is based on the following works:

(Joint with Ge Fan) A combinatorial identity and the finite dual of infinite dihedral group algebra. Mathematika 67 (2021) 498-513.

(Joint with Kangqiao Li) The finite duals of affine prime regular Hopf algebras of GK-dimension one, arXiv 2103.00495.

Preparation

- In this talk, k an algebraically closed field of characteristic zero.
- All spaces and algebras are over k.
- This talk is based on the following works:

(Joint with Ge Fan) A combinatorial identity and the finite dual of infinite dihedral group algebra. Mathematika 67 (2021) 498-513.

(Joint with Kangqiao Li) The finite duals of affine prime regular Hopf algebras of GK-dimension one, arXiv 2103.00495.

/□ ▶ ∢ ∃ ▶

Preparation

- In this talk, k an algebraically closed field of characteristic zero.
- All spaces and algebras are over k.
- This talk is based on the following works:

(Joint with Ge Fan) A combinatorial identity and the finite dual of infinite dihedral group algebra. Mathematika 67 (2021) 498-513.

(Joint with Kangqiao Li) The finite duals of affine prime regular Hopf algebras of GK-dimension one, arXiv 2103.00495.

- To understand infinite dimensional Hopf algebras better!
- The standpoint of our understanding: dual.

イロト イポト イヨト

- ∢ ≣ ▶

- To understand infinite dimensional Hopf algebras better!
- The standpoint of our understanding: dual.

Image: A matrix and a matrix

글 🕨 🖌 글 🕨

- To understand infinite dimensional Hopf algebras better!
- The standpoint of our understanding: dual.

-

< ∃ >

• One can consider the "dual" version of homological integral!

One can consider the Radford trace formula...

イロト イポト イヨト

- ∢ ≣ ▶

- One can consider the "dual" version of homological integral!
- One can consider the Radford trace formula...

イロト イポト イヨト

- ₹ € ►

- One can consider the "dual" version of homological integral!
- One can consider the Radford trace formula...

イロト イポト イヨト

- ₹ € ►

A Larson-Radford's result

• It is well-known that Larson-Radford (J. Algebra, 1988) proved the following result:

Theorem

Let H be a finite dimensional Hopf algebra, then H is semisimple if and only if H^* is semisimple.

• A natural question is: How about the infinite dimensional case?

▲ 伊 ▶ ▲ 三 ▶ ▲

A Larson-Radford's result

• It is well-known that Larson-Radford (J. Algebra, 1988) proved the following result:

Theorem

Let H be a finite dimensional Hopf algebra, then H is semisimple if and only if H^* is semisimple.

• A natural question is: How about the infinite dimensional case?

< A > <

A Larson-Radford's result

• It is well-known that Larson-Radford (J. Algebra, 1988) proved the following result:

Theorem

Let H be a finite dimensional Hopf algebra, then H is semisimple if and only if H^* is semisimple.

• A natural question is: How about the infinite dimensional case?

< A > <

A Larson-Radford's result

• It is well-known that Larson-Radford (J. Algebra, 1988) proved the following result:

Theorem

Let H be a finite dimensional Hopf algebra, then H is semisimple if and only if H^* is semisimple.

• A natural question is: How about the infinite dimensional case?

< //2 ▶ < 三 ▶

A Larson-Radford's result

- Naively, the infinite dimensional analogue seems to be:
- A Hopf algebra H has finite global dimension if and only if H^* has finite global dimension?
- But H^* has no dual Hopf algebra structure in general.
- So a natural candidate for H^* is H° , the finite dual of H.

/∰ ► < Ξ ►

A Larson-Radford's result

- Naively, the infinite dimensional analogue seems to be:
- A Hopf algebra *H* has finite global dimension if and only if *H*^{*} has finite global dimension?
- But H^* has no dual Hopf algebra structure in general.
- So a natural candidate for H^* is H° , the finite dual of H.

A Larson-Radford's result

- Naively, the infinite dimensional analogue seems to be:
- A Hopf algebra *H* has finite global dimension if and only if *H*^{*} has finite global dimension?
- But H^* has no dual Hopf algebra structure in general.
- So a natural candidate for H^* is H° , the finite dual of H.

A Larson-Radford's result

- Naively, the infinite dimensional analogue seems to be:
- A Hopf algebra *H* has finite global dimension if and only if *H*^{*} has finite global dimension?
- But H^* has no dual Hopf algebra structure in general.
- So a natural candidate for H^* is H° , the finite dual of H.

A Takeuchi's definition

• Takeuchi defined a quantum group as follows.

Definition

A quantum group G is defined to be a triple

$$G = (A, U, \langle , \rangle)$$

where A and U are Hopf algebras, and \langle , \rangle is a Hopf pairing on $U \times A$.

• A natural question is: When a Hopf algebra can give a quantum group in the Takeuchi's sense?

ヘロト 不得 とくほとくほ

A Takeuchi's definition

• Takeuchi defined a quantum group as follows.

Definition

A quantum group G is defined to be a triple

$$G = (A, U, \langle , \rangle)$$

where A and U are Hopf algebras, and \langle , \rangle is a Hopf pairing on $U \times A$.

• A natural question is: When a Hopf algebra can give a quantum group in the Takeuchi's sense?

イロト イポト イヨト イヨ

A Takeuchi's definition

• Takeuchi defined a quantum group as follows.

Definition

A quantum group G is defined to be a triple

$$G = (A, U, \langle , \rangle)$$

where A and U are Hopf algebras, and \langle , \rangle is a Hopf pairing on $U \times A$.

• A natural question is: When a Hopf algebra can give a quantum group in the Takeuchi's sense?

- Basic idea: From *H* to nondegenerate Hopf pairing:
 H → (*H*, *H*[•]).
- Raising many questions: Existence? Uniqueness?...
- Lucky point: We know the classification of some infinite-dimensional Hopf algebras, for example

□▶★□▶★□▶

- Basic idea: From *H* to nondegenerate Hopf pairing:
 H → (*H*, *H*[•]).
- Raising many questions: Existence? Uniqueness?...
- Lucky point: We know the classification of some infinite-dimensional Hopf algebras, for example

伺下 (日下)(日

- Basic idea: From *H* to nondegenerate Hopf pairing:
 H → (*H*, *H*[•]).
- Raising many questions: Existence? Uniqueness?...
- Lucky point: We know the classification of some infinite-dimensional Hopf algebras, for example

伺下 (日下)(日

- Basic idea: From *H* to nondegenerate Hopf pairing:
 H → (*H*, *H*[•]).
- Raising many questions: Existence? Uniqueness?...
- Lucky point: We know the classification of some infinite-dimensional Hopf algebras, for example

伺下 (日下)(日

- Basic idea: From *H* to nondegenerate Hopf pairing:
 H → (*H*, *H*[•]).
- Raising many questions: Existence? Uniqueness?...
- Lucky point: We know the classification of some infinite-dimensional Hopf algebras, for example

・ 同 ト ・ ヨ ト ・ ヨ

- Basic idea: From *H* to nondegenerate Hopf pairing:
 H → (*H*, *H*[•]).
- Raising many questions: Existence? Uniqueness?...
- Lucky point: We know the classification of some infinite-dimensional Hopf algebras, for example

/□ ▶ ▲ 三 ▶ ▲

Classification

- Based on previous works, we already got a complete classification about noetherian prime regular Hopf algebras of GK-dim one:
- Infinite dimensional Taft algebra T_{∞} ;
- Infinite dihedral group algebra $k\mathbb{D}_{\infty}$;
- Generalized Liu's algebras $B(n, \omega, \gamma)$;
- Hopf algebras $D(m, d, \xi)$.
- In this talk, we will determine the finite duals of these Hopf algebras. From this, we test above questions.

Classification

- Based on previous works, we already got a complete classification about noetherian prime regular Hopf algebras of GK-dim one:
- Infinite dimensional Taft algebra T_{∞} ;
- Infinite dihedral group algebra $\mathbb{k}\mathbb{D}_{\infty}$;
- Generalized Liu's algebras $B(n, \omega, \gamma)$;
- Hopf algebras $D(m, d, \xi)$.
- In this talk, we will determine the finite duals of these Hopf algebras. From this, we test above questions.

Classification

- Based on previous works, we already got a complete classification about noetherian prime regular Hopf algebras of GK-dim one:
- Infinite dimensional Taft algebra T_{∞} ;
- Infinite dihedral group algebra kD_∞;
- Generalized Liu's algebras $B(n, \omega, \gamma)$;
- Hopf algebras $D(m, d, \xi)$.
- In this talk, we will determine the finite duals of these Hopf algebras. From this, we test above questions.

/□ ▶ < 三 ▶ <

Classification

- Based on previous works, we already got a complete classification about noetherian prime regular Hopf algebras of GK-dim one:
- Infinite dimensional Taft algebra T_{∞} ;
- Infinite dihedral group algebra \mathbb{kD}_{∞} ;
- Generalized Liu's algebras $B(n, \omega, \gamma)$;
- Hopf algebras $D(m, d, \xi)$.
- In this talk, we will determine the finite duals of these Hopf algebras. From this, we test above questions.

/□ ▶ ∢ ∃ ▶
Classification

- Based on previous works, we already got a complete classification about noetherian prime regular Hopf algebras of GK-dim one:
- Infinite dimensional Taft algebra T_{∞} ;
- Infinite dihedral group algebra \mathbb{kD}_{∞} ;
- Generalized Liu's algebras $B(n, \omega, \gamma)$;
- Hopf algebras $D(m, d, \xi)$.
- In this talk, we will determine the finite duals of these Hopf algebras. From this, we test above questions.

Classification

- Based on previous works, we already got a complete classification about noetherian prime regular Hopf algebras of GK-dim one:
- Infinite dimensional Taft algebra T_{∞} ;
- Infinite dihedral group algebra \mathbb{kD}_{∞} ;
- Generalized Liu's algebras $B(n, \omega, \gamma)$;
- Hopf algebras $D(m, d, \xi)$.
- In this talk, we will determine the finite duals of these Hopf algebras. From this, we test above questions.

Classification

- Based on previous works, we already got a complete classification about noetherian prime regular Hopf algebras of GK-dim one:
- Infinite dimensional Taft algebra T_{∞} ;
- Infinite dihedral group algebra \mathbb{kD}_{∞} ;
- Generalized Liu's algebras $B(n, \omega, \gamma)$;
- Hopf algebras $D(m, d, \xi)$.
- In this talk, we will determine the finite duals of these Hopf algebras. From this, we test above questions.

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イヨト イヨト イ

Outline

1 Motivations

2 Determination of the finite duals

- For infinite dihedral group algebra $k\mathbb{D}_{\infty}$
- For infinite dimensional Taft algebra $T_{\infty}(n, v, \xi)$
- For generalized Liu algebra $B(n, \omega, \gamma)$
- For the Hopf algebra $D(m, d, \xi)$

3 Some consequences

Finite Dual

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イ理ト イヨト イヨト

• Let *H* be a Hopf algebra, the finite dual H° of *H* is defined by

 $H^{\circ} := \{ f \in H^* | f(I) = 0, \text{ some ideal } I \text{ s.t. } \dim(H/I) < \infty \}.$

Finite Dual

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イポト イヨト イヨト

• Let *H* be a Hopf algebra, the finite dual H° of *H* is defined by

 $H^{\circ} := \{ f \in H^* | f(I) = 0, \text{ some ideal } I \text{ s.t. } \dim(H/I) < \infty \}.$

Finite Dual

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

• Let *H* be a Hopf algebra, the finite dual H° of *H* is defined by

 $H^{\circ} := \{ f \in H^* | f(I) = 0, \text{ some ideal } I \text{ s.t. } \dim(H/I) < \infty \}.$

Finite Dual

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イポト イヨト イヨト

• Let *H* be a Hopf algebra, the finite dual H° of *H* is defined by

 $H^{\circ} := \{ f \in H^* | f(I) = 0, \text{ some ideal } I \text{ s.t. } \dim(H/I) < \infty \}.$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イ理ト イヨト イヨト

Some known examples

Example

Let H_1 be the polynomial algebra k[x], $\Delta(x) = 1 \otimes x + x \otimes 1$. Then we have

 $H_1^{\circ} \cong \Bbbk[x] \otimes kG$

where G = (k, +).

Example

Let H_2 be the infinite cyclic group algebra $\mathbb{k}[g, g^{-1}]$, $\Delta(g) = g \otimes g$. Then we have

$$H_2^{\circ} \cong \Bbbk[x] \otimes \Bbbk G$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

◆□▶ ◆□▶ ◆□▶ ◆□▶

Some known examples

Example

Let H_1 be the polynomial algebra k[x], $\Delta(x) = 1 \otimes x + x \otimes 1$. Then we have

$$H_1^{\circ} \cong \Bbbk[x] \otimes kG$$

where $G = (\mathbb{k}, +)$.

Example

Let H_2 be the infinite cyclic group algebra $\mathbb{k}[g, g^{-1}]$, $\Delta(g) = g \otimes g$. Then we have

$$H_2^{\circ} \cong \Bbbk[x] \otimes \Bbbk G$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

・ロト ・聞 ト ・ ヨト ・ ヨト

Some known examples

Example

Let H_1 be the polynomial algebra k[x], $\Delta(x) = 1 \otimes x + x \otimes 1$. Then we have

$$H_1^{\circ} \cong \Bbbk[x] \otimes kG$$

where $G = (\Bbbk, +)$.

Example

Let H_2 be the infinite cyclic group algebra $k[g, g^{-1}]$, $\Delta(g) = g \otimes g$. Then we have

$$H_2^{\circ} \cong \Bbbk[x] \otimes \Bbbk G$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, v, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イ理ト イヨト イヨト

Some known examples

Example

Let H_1 be the polynomial algebra $\mathbb{k}[x]$, $\Delta(x) = 1 \otimes x + x \otimes 1$. Then we have

$$H_1^{\circ} \cong \Bbbk[x] \otimes kG$$

where $G = (\Bbbk, +)$.

Example

Let H_2 be the infinite cyclic group algebra $\mathbb{k}[g, g^{-1}]$, $\Delta(g) = g \otimes g$. Then we have

$$H_2^{\circ} \cong \Bbbk[x] \otimes \Bbbk G$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

Some known examples

• There is a common point in above examples, that is, *H* is commutative. Therefore *H*^o is cocommutative and thus one can apply Milnor-Moore's Theorem.

Example

Consider the quantum group $U_q(sl_n)$. Then we have

$$U_q(sl_n)^{\circ} \cong \mathcal{O}_q(SL_n) \# k\mathbb{Z}_2^{n-1}.$$

This is proved by Takeuchi in 1992.

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

Some known examples

• There is a common point in above examples, that is, *H* is commutative. Therefore *H*^o is cocommutative and thus one can apply Milnor-Moore's Theorem.

Example

Consider the quantum group $U_q(sl_n)$. Then we have

$$U_q(sl_n)^{\circ} \cong \mathcal{O}_q(SL_n) \# k\mathbb{Z}_2^{n-1}.$$

This is proved by Takeuchi in 1992.

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

Some known examples

• There is a common point in above examples, that is, *H* is commutative. Therefore *H*[°] is cocommutative and thus one can apply Milnor-Moore's Theorem.

Example

Consider the quantum group $U_q(sl_n)$. Then we have

 $U_q(sl_n)^{\circ} \cong \mathcal{O}_q(SL_n) \# k\mathbb{Z}_2^{n-1}.$

This is proved by Takeuchi in 1992.

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

Some known examples

• There is a common point in above examples, that is, *H* is commutative. Therefore *H*[°] is cocommutative and thus one can apply Milnor-Moore's Theorem.

Example

Consider the quantum group $U_q(sl_n)$. Then we have

 $U_q(sl_n)^{\circ} \cong \mathcal{O}_q(SL_n) \# k\mathbb{Z}_2^{n-1}.$

This is proved by Takeuchi in 1992.

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

Some known examples

• There is a common point in above examples, that is, *H* is commutative. Therefore *H*[°] is cocommutative and thus one can apply Milnor-Moore's Theorem.

Example

Consider the quantum group $U_q(sl_n)$. Then we have

$$U_q(sl_n)^{\circ} \cong \mathcal{O}_q(SL_n) \# k\mathbb{Z}_2^{n-1}.$$

This is proved by Takeuchi in 1992.

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

Some known examples

• There is a common point in above examples, that is, *H* is commutative. Therefore *H*[°] is cocommutative and thus one can apply Milnor-Moore's Theorem.

Example

Consider the quantum group $U_q(sl_n)$. Then we have

$$U_q(sl_n)^{\circ} \cong \mathcal{O}_q(SL_n) \# k\mathbb{Z}_2^{n-1}.$$

This is proved by Takeuchi in 1992.

For infinite dihedral group algebra $\mathbb{k} \mathbb{D}_{\infty}$ For infinite dimensional Taft algebra T_{∞} (n, ν, ξ) For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イポト イヨト イヨ

Infinite dihedral group algebra $\Bbbk \mathbb{D}_\infty$

By definition, the infinite dihedral group D_∞ is generated by two elements g and x satisfying

$$x^2 = 1$$
, $xgx = g^{-1}$.

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イポト イヨト イヨ

Infinite dihedral group algebra $\Bbbk \mathbb{D}_\infty$

By definition, the infinite dihedral group D_∞ is generated by two elements g and x satisfying

$$x^2 = 1$$
, $xgx = g^{-1}$.

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イポト イヨト イヨ

Infinite dihedral group algebra $\Bbbk \mathbb{D}_\infty$

By definition, the infinite dihedral group D_∞ is generated by two elements g and x satisfying

$$x^2 = 1$$
, $xgx = g^{-1}$.

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Infinite dihedral group algebra $\Bbbk \mathbb{D}_\infty$

By definition, the infinite dihedral group D_∞ is generated by two elements g and x satisfying

$$x^2 = 1$$
, $xgx = g^{-1}$.

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, v, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

・ロト ・得ト ・モト ・モト

The Hopf algebra $k\mathbb{D}_{\infty^{\circ}}$

 As an algebra, kD_{∞°} is generated by E, Φ_λ, Ψ_λ for λ ∈ k* = k \ {0} and subjects to the following relations

$$\begin{split} E\Phi_{\lambda} &= \Phi_{\lambda}E, \ E\Psi_{\lambda} = \Psi_{\lambda}E, \ \Phi_{1} = 1, \\ \Phi_{\lambda_{1}}\Psi_{\lambda_{2}} &= \Psi_{\lambda_{1}}\Phi_{\lambda_{2}} = \Psi_{\lambda_{1}\lambda_{2}}, \ \Phi_{\lambda_{1}}\Phi_{\lambda_{2}} = \Phi_{\lambda_{1}\lambda_{2}}, \ \Psi_{\lambda_{1}}\Psi_{\lambda_{2}} = \Phi_{\lambda_{1}\lambda_{2}} \\ \text{for all } \lambda, \lambda_{1}, \lambda_{2} \in \mathbb{k}^{*}. \end{split}$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イ理ト イヨト イヨト

The Hopf algebra $k\mathbb{D}_{\infty^{\circ}}$

 As an algebra, kD_∞° is generated by E, Φ_λ, Ψ_λ for λ ∈ k* = k \ {0} and subjects to the following relations

$$\begin{split} E\Phi_{\lambda} &= \Phi_{\lambda}E, \ E\Psi_{\lambda} = \Psi_{\lambda}E, \ \Phi_{1} = 1, \\ \Phi_{\lambda_{1}}\Psi_{\lambda_{2}} &= \Psi_{\lambda_{1}}\Phi_{\lambda_{2}} = \Psi_{\lambda_{1}\lambda_{2}}, \ \Phi_{\lambda_{1}}\Phi_{\lambda_{2}} = \Phi_{\lambda_{1}\lambda_{2}}, \ \Psi_{\lambda_{1}}\Psi_{\lambda_{2}} = \Phi_{\lambda_{1}\lambda_{2}} \\ \text{for all } \lambda, \lambda_{1}, \lambda_{2} \in \mathbb{k}^{*}. \end{split}$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イポト イヨト イヨト

The Hopf algebra $\mathbb{k}\mathbb{D}_{\infty^{\circ}}$

The comultiplication, counit and the antipode are given by

$$\begin{split} &\Delta(E) = E \otimes 1 + \psi_1 \otimes E, \\ &\Delta(\Phi_{\lambda}) = \frac{1}{2}(\phi_{\lambda} + \psi_{\lambda}) \otimes \Phi_{\lambda} + \frac{1}{2}(\Phi_{\lambda} - \Psi_{\lambda}) \otimes \Phi_{\lambda^{-1}}, \\ &\Delta(\Psi_{\lambda}) = \frac{1}{2}(\Phi_{\lambda} + \Psi_{\lambda}) \otimes \Psi_{\lambda} - \frac{1}{2}(\Phi_{\lambda} - \Psi_{\lambda}) \otimes \Psi_{\lambda^{-1}}, \\ &\varepsilon(E) = 0, \ \varepsilon(\Phi_{\lambda}) = \varepsilon(\Psi_{\lambda}) = 1, \\ &S(E) = -\psi_1 E, \ S(\Phi_{\lambda}) = \frac{1}{2}(\Phi_{\lambda^{-1}} + \Psi_{\lambda^{-1}}) + \frac{1}{2}(\Phi_{\lambda} - \Psi_{\lambda}), \\ &S(\Psi_{\lambda}) = \frac{1}{2}(\Phi_{\lambda^{-1}} + \Psi_{\lambda^{-1}}) - \frac{1}{2}(\Phi_{\lambda} - \Psi_{\lambda}) \end{split}$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

・ロト ・ 理ト ・ ヨト ・ ヨト

Main result

Lemma

With operations defined above, $\mathbb{k}\mathbb{D}_{\infty^{\circ}}$ is a Hopf algebra.

Theorem

As Hopf algebras, we have

 $(\mathbb{k}\mathbb{D}_{\infty})^{\circ}\cong\mathbb{k}\mathbb{D}_{\infty^{\circ}}.$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イ理ト イヨト イヨト

Main result

Lemma

With operations defined above, $\mathbb{kD}_{\infty^{\circ}}$ is a Hopf algebra.

Theorem

As Hopf algebras, we have

 $(\mathbb{k}\mathbb{D}_{\infty})^{\circ}\cong\mathbb{k}\mathbb{D}_{\infty^{\circ}}.$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

Main result

Lemma

With operations defined above, $\mathbb{kD}_{\infty^{\circ}}$ is a Hopf algebra.

Theorem

As Hopf algebras, we have

 $(\Bbbk \mathbb{D}_{\infty})^{\circ} \cong \Bbbk \mathbb{D}_{\infty^{\circ}}.$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

・ロト ・聞 ト ・ 国 ト ・ 国 ト

Sketch of the proof: Generators

Clearly, {g^jx^k | j ∈ Z, k = 0, 1} is a basis of kD_∞. Denote its dual basis by f_{j,k}.

• Construct:

$$e := \sum_{i \in \mathbb{Z}} i(f_{i,0} + f_{i,1}) : g^j x^k \mapsto j,$$

$$\phi_{\lambda} := \sum_{i \in \mathbb{Z}} \lambda^i (f_{i,0} + f_{i,1}) : g^j x^k \mapsto \lambda^j,$$

$$\psi_{\lambda} := \sum_{i \in \mathbb{Z}} \lambda^i (f_{i,0} - f_{i,1}) : g^j x^k \mapsto (-1)^k \lambda^j$$

For infinite dihedral group algebra $k\mathbb{D}_{\infty}$ For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Sketch of the proof: Generators

Clearly, {g^jx^k | j ∈ Z, k = 0, 1} is a basis of kD_∞. Denote its dual basis by f_{j,k}.

• Construct:

$$e := \sum_{i \in \mathbb{Z}} i(f_{i,0} + f_{i,1}) : g^{j} x^{k} \mapsto j,$$

$$\phi_{\lambda} := \sum_{i \in \mathbb{Z}} \lambda^{i}(f_{i,0} + f_{i,1}) : g^{j} x^{k} \mapsto \lambda^{j},$$

$$\psi_{\lambda} := \sum_{i \in \mathbb{Z}} \lambda^{i}(f_{i,0} - f_{i,1}) : g^{j} x^{k} \mapsto (-1)^{k} \lambda^{j}$$

For infinite dihedral group algebra $k\mathbb{D}_{\infty}$ For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Sketch of the proof: Generators

Clearly, {g^jx^k | j ∈ ℤ, k = 0, 1} is a basis of kD_∞. Denote its dual basis by f_{j,k}.

• Construct:

$$e := \sum_{i \in \mathbb{Z}} i(f_{i,0} + f_{i,1}) : g^{j} x^{k} \mapsto j,$$

$$\phi_{\lambda} := \sum_{i \in \mathbb{Z}} \lambda^{i}(f_{i,0} + f_{i,1}) : g^{j} x^{k} \mapsto \lambda^{j},$$

$$\psi_{\lambda} := \sum_{i \in \mathbb{Z}} \lambda^{i}(f_{i,0} - f_{i,1}) : g^{j} x^{k} \mapsto (-1)^{k} \lambda^{j}$$

For infinite dihedral group algebra $k\mathbb{D}_{\infty}$ For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Sketch of the proof: Generators

- Clearly, {g^jx^k | j ∈ ℤ, k = 0, 1} is a basis of kD_∞. Denote its dual basis by f_{j,k}.
- Construct:

$$e := \sum_{i \in \mathbb{Z}} i(f_{i,0} + f_{i,1}) : g^{j} x^{k} \mapsto j,$$

$$\phi_{\lambda} := \sum_{i \in \mathbb{Z}} \lambda^{i}(f_{i,0} + f_{i,1}) : g^{j} x^{k} \mapsto \lambda^{j},$$

$$\psi_{\lambda} := \sum_{i \in \mathbb{Z}} \lambda^{i}(f_{i,0} - f_{i,1}) : g^{j} x^{k} \mapsto (-1)^{k} \lambda^{j}$$

For infinite dihedral group algebra $\mathbb{k} \mathbb{D}_{\infty}$ For infinite dimensional Taft algebra T_{∞} (n, ν, ξ) For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イポト イヨト イヨト

Sketch of the proof: Generators

- Clearly, {g^jx^k | j ∈ ℤ, k = 0, 1} is a basis of kD_∞. Denote its dual basis by f_{j,k}.
- Construct:

$$e := \sum_{i \in \mathbb{Z}} i(f_{i,0} + f_{i,1}) : g^j x^k \mapsto j,$$

$$\phi_{\lambda} := \sum_{i \in \mathbb{Z}} \lambda^i (f_{i,0} + f_{i,1}) : g^j x^k \mapsto \lambda^j,$$

$$\psi_{\lambda} := \sum_{i \in \mathbb{Z}} \lambda^i (f_{i,0} - f_{i,1}) : g^j x^k \mapsto (-1)^k \lambda^j$$

For infinite dihedral group algebra $k \mathbb{D}_{\infty}$ For infinite dimensional Taft algebra $T_{\infty}(n, v, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イポト イヨト イヨ

Sketch of the proof: Generation property

- Key: As an algebra, $(\mathbb{k}\mathbb{D}_{\infty})^{\circ}$ is generated by E, Φ_{λ} and Ψ_{λ} .
- Define a map

 $\Theta \colon \mathbb{k}\mathbb{D}_{\infty^{\circ}} \to (\mathbb{k}\mathbb{D}_{\infty})^{\circ}, \ E \mapsto e, \ \Phi_{\lambda} \mapsto \phi_{\lambda}, \ \Psi_{\lambda} \mapsto \psi_{\lambda}, \ (\lambda \in \mathbb{k}^{*})$

which gives the desired isomorphism.

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

・ロト ・得ト ・モト ・モト

Sketch of the proof: Generation property

- Key: As an algebra, $(\mathbb{k}\mathbb{D}_{\infty})^{\circ}$ is generated by E, Φ_{λ} and Ψ_{λ} .
- Define a map

 $\Theta \colon \mathbb{k}\mathbb{D}_{\infty^{\circ}} \to (\mathbb{k}\mathbb{D}_{\infty})^{\circ}, \ E \mapsto e, \ \Phi_{\lambda} \mapsto \phi_{\lambda}, \ \Psi_{\lambda} \mapsto \psi_{\lambda}, \ (\lambda \in \mathbb{k}^{*})$

which gives the desired isomorphism.

For infinite dihedral group algebra $k \mathbb{D}_{\infty}$ For infinite dimensional Taft algebra $T_{\infty}(n, v, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イポト イヨト イヨト

Sketch of the proof: Generation property

- Key: As an algebra, $(\mathbb{k}\mathbb{D}_{\infty})^{\circ}$ is generated by E, Φ_{λ} and Ψ_{λ} .
- Define a map

 $\Theta \colon \mathbb{k}\mathbb{D}_{\infty^{\circ}} \to (\mathbb{k}\mathbb{D}_{\infty})^{\circ}, \ E \mapsto e, \ \Phi_{\lambda} \mapsto \phi_{\lambda}, \ \Psi_{\lambda} \mapsto \psi_{\lambda}, \ (\lambda \in \mathbb{k}^{*})$

which gives the desired isomorphism.
For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イポト イヨト イヨト

Sketch of the proof: Generation property

- Key: As an algebra, $(\mathbb{k}\mathbb{D}_{\infty})^{\circ}$ is generated by E, Φ_{λ} and Ψ_{λ} .
- Define a map

 $\Theta \colon \mathbb{k}\mathbb{D}_{\infty^{\circ}} \to (\mathbb{k}\mathbb{D}_{\infty})^{\circ}, \ E \mapsto e, \ \Phi_{\lambda} \mapsto \phi_{\lambda}, \ \Psi_{\lambda} \mapsto \psi_{\lambda}, \ (\lambda \in \mathbb{k}^{*})$

which gives the desired isomorphism.

For infinite dihedral group algebra $\mathbb{k} \mathbb{D}_{\infty}$ For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イ理ト イヨト イヨト

Remarks

• The link-indecomposable component (Montgomery's sense) containing 1 is the Hopf subalgebra generated by E, Ψ_1 which can be described as follows

$$E\Psi_1 = \Psi_1 E, \quad \Psi_1^2 = 1,$$

$$\Delta(E) = E \otimes 1 + \Psi_1 \otimes E, \quad \Delta(\Psi_1) = \Psi_1 \otimes \Psi_1.$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イ理ト イヨト イヨ

Remarks

• The link-indecomposable component (Montgomery's sense) containing 1 is the Hopf subalgebra generated by E, Ψ_1 which can be described as follows

$$E\Psi_1 = \Psi_1 E, \quad \Psi_1^2 = 1,$$

$$\Delta(E) = E \otimes 1 + \Psi_1 \otimes E, \quad \Delta(\Psi_1) = \Psi_1 \otimes \Psi_1.$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イ理ト イヨト イヨ

Remarks

• The link-indecomposable component (Montgomery's sense) containing 1 is the Hopf subalgebra generated by E, Ψ_1 which can be described as follows

$$\begin{split} E\Psi_1 &= \Psi_1 E, \ \Psi_1^2 = 1, \\ \Delta(E) &= E \otimes 1 + \Psi_1 \otimes E, \ \Delta(\Psi_1) = \Psi_1 \otimes \Psi_1. \end{split}$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イ理ト イヨト イヨ

Remarks

• The link-indecomposable component (Montgomery's sense) containing 1 is the Hopf subalgebra generated by E, Ψ_1 which can be described as follows

$$\begin{split} E\Psi_1 &= \Psi_1 E, \ \Psi_1^2 = 1, \\ \Delta(E) &= E \otimes 1 + \Psi_1 \otimes E, \ \Delta(\Psi_1) = \Psi_1 \otimes \Psi_1. \end{split}$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Remarks

• The link-indecomposable component (Montgomery's sense) containing 1 is the Hopf subalgebra generated by E, Ψ_1 which can be described as follows

$$\begin{split} E\Psi_1 &= \Psi_1 E, \ \Psi_1^2 = 1, \\ \Delta(E) &= E \otimes 1 + \Psi_1 \otimes E, \ \Delta(\Psi_1) = \Psi_1 \otimes \Psi_1. \end{split}$$

イロト イ理ト イヨト イヨト

Infinite dimensional Taft algebra $T_{\infty}(n, v, \xi)$

- Let *n* be a positive integer, $0 \le v \le n 1$, and ξ be a primitive *n*th root of 1.
- As an algebra, $T_{\infty}(n, v, \xi)$ is generated by g and x with relations

$$g^n = 1, \ xg = \xi gx.$$

Then $T_{\infty}(n, v, \xi)$ becomes a Hopf algebra with comultiplication, counit and antipode given by

 $\begin{aligned} \Delta(g) &= g \otimes g, \quad \Delta(x) = 1 \otimes x + x \otimes g^{\nu}, \quad \varepsilon(g) = 1, \quad \varepsilon(x) = 0, \\ S(g) &= g^{n-1}, \quad S(x) = -\xi^{-\nu} g^{n-\nu} x. \end{aligned}$

イロト イ理ト イヨト イヨト

Infinite dimensional Taft algebra $T_{\infty}(n, v, \xi)$

- Let *n* be a positive integer, $0 \le v \le n 1$, and ξ be a primitive *n*th root of 1.
- As an algebra, $T_{\infty}(n, v, \xi)$ is generated by g and x with relations

$$g^n = 1, \ xg = \xi gx.$$

Then $T_{\infty}(n, v, \xi)$ becomes a Hopf algebra with comultiplication, counit and antipode given by

$$\begin{split} \Delta(g) &= g \otimes g, \ \Delta(x) = 1 \otimes x + x \otimes g^{\nu}, \ \varepsilon(g) = 1, \ \varepsilon(x) = 0, \\ S(g) &= g^{n-1}, \ S(x) = -\xi^{-\nu}g^{n-\nu}x. \end{split}$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, v, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イヨト イヨト イ

The Hopf algebra $T_{\infty^{\circ}}(n, v, \xi)$

• For simplicity we denote $m := \frac{n}{\gcd(n,v)}$.

• As an algebra, $T_{\infty^{\circ}}(n, v, \xi)$ is generated by

 $\psi_{\lambda}, \ \omega, \ E_2, \ E_1$

for $\lambda \in \mathbb{k}$ and subjects to the following relations

$$\begin{split} \psi_{\lambda_1}\psi_{\lambda_2} &= \psi_{\lambda_1+\lambda_2}, \ \psi_0 = 1, \ \omega^n = 1, \ E_1^m = 0, \\ \omega\psi_{\lambda} &= \psi_{\lambda}\omega, \ E_2\omega = \omega E_2, \ E_1\omega = \xi^{\nu}\omega E_1, \\ E_2\psi_{\lambda} &= \psi_{\lambda}E_2, \ E_1\psi_{\lambda} = \psi_{\lambda}E_1, \ E_1E_2 = E_2E_1 \end{split}$$

for all $\lambda, \lambda_1, \lambda_2 \in \mathbb{k}$.

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, v, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イポト イヨト イヨ

The Hopf algebra $T_{\infty^{\circ}}(n, v, \xi)$

- For simplicity we denote $m := \frac{n}{\gcd(n,v)}$.
- As an algebra, $T_{\infty^{\circ}}(n, v, \xi)$ is generated by

 $\psi_{\lambda}, \ \omega, \ E_2, \ E_1$

for $\lambda \in \mathbb{k}$ and subjects to the following relations

$$\begin{split} \psi_{\lambda_1}\psi_{\lambda_2} &= \psi_{\lambda_1+\lambda_2}, \ \psi_0 = 1, \ \omega^n = 1, \ E_1^m = 0, \\ \omega\psi_{\lambda} &= \psi_{\lambda}\omega, \ E_2\omega = \omega E_2, \ E_1\omega = \xi^{\nu}\omega E_1, \\ E_2\psi_{\lambda} &= \psi_{\lambda}E_2, \ E_1\psi_{\lambda} = \psi_{\lambda}E_1, \ E_1E_2 = E_2E_1 \end{split}$$

for all $\lambda, \lambda_1, \lambda_2 \in \mathbb{k}$.

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, v, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

(日)

The Hopf algebra $T_{\infty^{\circ}}(n, v, \xi)$

- For simplicity we denote $m := \frac{n}{\gcd(n,v)}$.
- As an algebra, $T_{\infty^{\circ}}(n, v, \xi)$ is generated by

 $\psi_{\lambda}, \ \omega, \ E_2, \ E_1$

for $\lambda \in \mathbb{k}$ and subjects to the following relations

$$\begin{split} \psi_{\lambda_1}\psi_{\lambda_2} &= \psi_{\lambda_1+\lambda_2}, \ \psi_0 = 1, \ \omega^n = 1, \ E_1^m = 0, \\ \omega\psi_{\lambda} &= \psi_{\lambda}\omega, \ E_2\omega = \omega E_2, \ E_1\omega = \xi^{\nu}\omega E_1, \\ E_2\psi_{\lambda} &= \psi_{\lambda}E_2, \ E_1\psi_{\lambda} = \psi_{\lambda}E_1, \ E_1E_2 = E_2E_1 \end{split}$$

for all $\lambda, \lambda_1, \lambda_2 \in \mathbb{k}$.

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

The Hopf algebra $T_{\infty^{\circ}}(n, v, \xi)$

The comultiplication, counit and the antipode are given by

 $\Delta(\omega) = \omega \otimes \omega, \quad \Delta(E_1) = 1 \otimes E_1 + E_1 \otimes \omega,$ $\Delta(E_2) = 1 \otimes E_2 + E_2 \otimes \omega^m + \sum_{k=1}^{m-1} E_1^{[k]} \otimes \omega^k E_1^{[m-k]},$ n/m-1 $\Delta(\psi_{\lambda}) = \sum_{c} (\psi_{\lambda\xi^{mc}} \otimes \psi_{\lambda}\sigma_{c})(1 \otimes 1 + \lambda \sum_{c}^{m-1} E_{1}^{[k]} \otimes \omega^{k} E_{1}^{[m-k]}),$ $\varepsilon(\omega) = \varepsilon(\psi_{\lambda}) = 1, \ \varepsilon(E_1) = \varepsilon(E_2) = 0, \ S(\omega) = \omega^{n-1},$ n/m-1 $S(E_1) = -\xi^{-v}\omega^{n-1}E_1, \ S(E_2) = -E_2, \ S(\psi_{\lambda}) = \sum \psi_{-\lambda\xi^{-mc}}\sigma_c,$

for $\lambda \in \mathbb{K}$, where $E_1^{[k]} := E_1^k / k!_{\xi^{\nu}}$ and $\sigma_c := \frac{m}{n} \sum_{l=0}^{n/m-1} \xi^{-lmc} \omega_{\ell}^{lm}$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, v, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イ理ト イヨト イヨト

Main result

Lemma

With operations defined above, $T_{\infty^{\circ}}(n, v, \xi)$ is a Hopf algebra.

Theorem

As Hopf algebras, we have

 $T_{\infty}(n,v,\xi)^{\circ} \cong T_{\infty^{\circ}}(n,v,\xi).$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, v, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イ理ト イヨト イヨト

Main result

Lemma

With operations defined above, $T_{\infty^{\circ}}(n, v, \xi)$ is a Hopf algebra.

Theorem

As Hopf algebras, we have

 $T_{\infty}(n,v,\xi)^{\circ} \cong T_{\infty^{\circ}}(n,v,\xi).$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, v, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イヨト イヨト イ

-

Main result

Lemma

With operations defined above, $T_{\infty^{\circ}}(n, v, \xi)$ is a Hopf algebra.

Theorem

As Hopf algebras, we have

$$T_{\infty}(n,v,\xi)^{\circ} \cong T_{\infty^{\circ}}(n,v,\xi).$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Remarks

• The link-indecomposable component (Montgomery's sense) containing 1 is the Hopf subalgebra generated by ω, E_2, E_1 which can be described as follows

$$\omega^{n} = 1, \quad E_{1}^{m} = 0,$$

$$E_{2}\omega = \omega E_{2}, \quad E_{1}\omega = \xi^{\nu}\omega E_{1}, \quad E_{1}E_{2} = E_{2}E_{1},$$

$$\Delta(\omega) = \omega \otimes \omega, \quad \Delta(E_{1}) = 1 \otimes E_{1} + E_{1} \otimes \omega,$$

$$\Delta(E_{2}) = 1 \otimes E_{2} + E_{2} \otimes \omega^{m} + \sum_{k=1}^{m-1} E_{1}^{[k]} \otimes \omega^{k} E_{1}^{[m-k]}.$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イポト イヨト

Remarks

• The link-indecomposable component (Montgomery's sense) containing 1 is the Hopf subalgebra generated by ω, E_2, E_1 which can be described as follows

$$\omega^{n} = 1, \quad E_{1}^{m} = 0,$$

$$E_{2}\omega = \omega E_{2}, \quad E_{1}\omega = \xi^{\nu}\omega E_{1}, \quad E_{1}E_{2} = E_{2}E_{1},$$

$$\Delta(\omega) = \omega \otimes \omega, \quad \Delta(E_{1}) = 1 \otimes E_{1} + E_{1} \otimes \omega,$$

$$\Delta(E_{2}) = 1 \otimes E_{2} + E_{2} \otimes \omega^{m} + \sum_{k=1}^{m-1} E_{1}^{[k]} \otimes \omega^{k} E_{1}^{[m-k]}.$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イポト イヨト

Remarks

• The link-indecomposable component (Montgomery's sense) containing 1 is the Hopf subalgebra generated by ω, E_2, E_1 which can be described as follows

$$\begin{split} \omega^n &= 1, \quad E_1^m = 0, \\ E_2 \omega &= \omega E_2, \quad E_1 \omega = \xi^{\nu} \omega E_1, \quad E_1 E_2 = E_2 E_1, \\ \Delta(\omega) &= \omega \otimes \omega, \quad \Delta(E_1) = 1 \otimes E_1 + E_1 \otimes \omega, \\ \Delta(E_2) &= 1 \otimes E_2 + E_2 \otimes \omega^m + \sum_{k=1}^{m-1} E_1^{[k]} \otimes \omega^k E_1^{[m-k]}. \end{split}$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

(日)

Remarks

• The link-indecomposable component (Montgomery's sense) containing 1 is the Hopf subalgebra generated by ω, E_2, E_1 which can be described as follows

$$\begin{split} \omega^n &= 1, \quad E_1^m = 0, \\ E_2 \omega &= \omega E_2, \quad E_1 \omega = \xi^{\nu} \omega E_1, \quad E_1 E_2 = E_2 E_1, \\ \Delta(\omega) &= \omega \otimes \omega, \quad \Delta(E_1) = 1 \otimes E_1 + E_1 \otimes \omega, \\ \Delta(E_2) &= 1 \otimes E_2 + E_2 \otimes \omega^m + \sum_{k=1}^{m-1} E_1^{[k]} \otimes \omega^k E_1^{[m-k]}. \end{split}$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

Generalized Liu algebra $B(n, \omega, \gamma)$

- Let n and ω be positive integers, and γ be a primitive nth root of 1.
- As an algebra, $B(n, \omega, \gamma)$ is generated by $x^{\pm 1}$, g and y with relations

$$\begin{cases} xx^{-1} = x^{-1}x = 1, & xg = gx, & xy = yx, \\ yg = \gamma gy, \\ y^n = 1 - x^{\omega} = 1 - g^n. \end{cases}$$

$$\begin{split} \Delta(x) &= x \otimes x, \ \Delta(g) = g \otimes g, \ \Delta(y) = 1 \otimes y + y \otimes g, \\ \varepsilon(x) &= \varepsilon(g) = 1, \ \varepsilon(y) = 0, \\ S(x) &= x^{-1}, \ S(g) = g^{-1}, \ S(y) = -\gamma^{-1}g^{-1}y. \end{split}$$

Generalized Liu algebra $B(n, \omega, \gamma)$

- Let n and ω be positive integers, and γ be a primitive nth root of
 1.
- As an algebra, $B(n, \omega, \gamma)$ is generated by $x^{\pm 1}$, g and y with relations

$$\begin{cases} xx^{-1} = x^{-1}x = 1, & xg = gx, & xy = yx, \\ yg = \gamma gy, & \\ y^n = 1 - x^{\omega} = 1 - g^n. \end{cases}$$

$$\Delta(x) = x \otimes x, \ \Delta(g) = g \otimes g, \ \Delta(y) = 1 \otimes y + y \otimes g,$$

$$\varepsilon(x) = \varepsilon(g) = 1, \ \varepsilon(y) = 0,$$

$$S(x) = x^{-1}, \ S(g) = g^{-1}, \ S(y) = -\gamma^{-1}g^{-1}y.$$

Generalized Liu algebra $B(n, \omega, \gamma)$

- Let n and ω be positive integers, and γ be a primitive nth root of
 1.
- As an algebra, $B(n, \omega, \gamma)$ is generated by $x^{\pm 1}$, g and y with relations

$$\begin{cases} xx^{-1} = x^{-1}x = 1, & xg = gx, & xy = yx, \\ yg = \gamma gy, & \\ y^n = 1 - x^{\omega} = 1 - g^n. \end{cases}$$

$$\Delta(x) = x \otimes x, \ \Delta(g) = g \otimes g, \ \Delta(y) = 1 \otimes y + y \otimes g,$$

$$\varepsilon(x) = \varepsilon(g) = 1, \ \varepsilon(y) = 0,$$

$$S(x) = x^{-1}, \ S(g) = g^{-1}, \ S(y) = -\gamma^{-1}g^{-1}y.$$

Generalized Liu algebra $B(n, \omega, \gamma)$

- Let n and ω be positive integers, and γ be a primitive nth root of 1.
- As an algebra, $B(n, \omega, \gamma)$ is generated by $x^{\pm 1}$, g and y with relations

$$\begin{cases} xx^{-1} = x^{-1}x = 1, & xg = gx, & xy = yx, \\ yg = \gamma gy, & \\ y^n = 1 - x^{\omega} = 1 - g^n. \end{cases}$$

$$\begin{split} \Delta(x) &= x \otimes x, \ \Delta(g) = g \otimes g, \ \Delta(y) = 1 \otimes y + y \otimes g, \\ \varepsilon(x) &= \varepsilon(g) = 1, \ \varepsilon(y) = 0, \\ S(x) &= x^{-1}, \ S(g) = g^{-1}, \ S(y) = -\gamma^{-1}g^{-1}y. \end{split}$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

Main result

Similarly, we construct a Hopf algebra B_o(n, ω, γ), and prove that

Theorem

As Hopf algebras, we have

 $B(n,\omega,\gamma)^{\circ} \cong B_{\circ}(n,\omega,\gamma).$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イポト イヨト イヨ

Generators for $B(n, \omega, \gamma)^{\circ}$

- $\{x^i g^j y^l \mid 0 \le i \le \omega 1, j \in \mathbb{Z}, 0 \le l \le n 1\}$ is a basis of $B(n, \omega, \gamma)$.
- Construct:

$$\begin{split} \psi_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{n}}} &: x^{i}g^{j}y^{l} \mapsto \delta_{l,0}\lambda^{\frac{j}{\omega}}\lambda^{\frac{j}{n}}, \\ E_{2} &: x^{i}g^{j}y^{l} \mapsto \delta_{l,0}(\frac{i}{\omega} + \frac{j}{n}), \quad E_{1} : x^{i}g^{j}y^{l} \mapsto \delta_{l,1} \end{split}$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

(日)

Generators for $B(n, \omega, \gamma)^{\circ}$

• $\{x^i g^j y^l \mid 0 \le i \le \omega - 1, j \in \mathbb{Z}, 0 \le l \le n - 1\}$ is a basis of $B(n, \omega, \gamma)$.

• Construct:

$$\begin{split} \psi_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{n}}} &: x^{i}g^{j}y^{l} \mapsto \delta_{l,0}\lambda^{\frac{i}{\omega}}\lambda^{\frac{j}{n}}, \\ E_{2} &: x^{i}g^{j}y^{l} \mapsto \delta_{l,0}(\frac{i}{\omega} + \frac{j}{n}), \quad E_{1} :: x^{i}g^{j}y^{l} \mapsto \delta_{l,1} \end{split}$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

(日)

Generators for $B(n, \omega, \gamma)^{\circ}$

- $\{x^i g^j y^l \mid 0 \le i \le \omega 1, j \in \mathbb{Z}, 0 \le l \le n 1\}$ is a basis of $B(n, \omega, \gamma)$.
- Construct:

$$\begin{split} \psi_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{n}}} &: x^{i}g^{j}y^{l} \mapsto \delta_{l,0}\lambda^{\frac{i}{\omega}}\lambda^{\frac{j}{n}}, \\ E_{2} &: x^{i}g^{j}y^{l} \mapsto \delta_{l,0}(\frac{i}{\omega} + \frac{j}{n}), \quad E_{1} : x^{i}g^{j}y^{l} \mapsto \delta_{l,1} \end{split}$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

(日)

Generators for $B(n, \omega, \gamma)^{\circ}$

- $\{x^i g^j y^l \mid 0 \le i \le \omega 1, j \in \mathbb{Z}, 0 \le l \le n 1\}$ is a basis of $B(n, \omega, \gamma)$.
- Construct:

$$\begin{split} \psi_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{n}}} &: x^{i}g^{j}y^{l} \mapsto \delta_{l,0}\lambda^{\frac{i}{\omega}}\lambda^{\frac{j}{n}}, \\ E_{2} &: x^{i}g^{j}y^{l} \mapsto \delta_{l,0}(\frac{i}{\omega} + \frac{j}{n}), \quad E_{1} : x^{i}g^{j}y^{l} \mapsto \delta_{l,1} \end{split}$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イ理ト イヨト イヨト

Generation for $B(n, \omega, \gamma)^{\circ}$

As an algebra, B(n, ω, γ)° is generated by ψ_{λ¹/ω,λ¹/n}, E₂ and E₁ with relations

$$\begin{split} \psi_{\lambda_{1}^{\frac{1}{\omega}},\lambda_{1}^{\frac{1}{n}}}\psi_{\lambda_{2}^{\frac{1}{\omega}},\lambda_{2}^{\frac{1}{n}}} &= \psi_{(\lambda_{1}^{\frac{1}{\omega}}\lambda_{2}^{\frac{1}{\omega}}),(\lambda_{1}^{\frac{1}{n}}\lambda_{2}^{\frac{1}{n}})}, \quad \psi_{1,1} = 1, \quad E_{1}^{n} = 0, \\ E_{2}\psi_{\lambda_{1}^{\frac{1}{\omega}},\lambda_{1}^{\frac{1}{n}}} &= \psi_{\lambda_{1}^{\frac{1}{\omega}},\lambda_{1}^{\frac{1}{n}}}E_{2}, \quad E_{1}\psi_{\lambda_{1}^{\frac{1}{\omega}},\lambda_{1}^{\frac{1}{n}}} &= \lambda^{\frac{1}{n}}\psi_{\lambda_{1}^{\frac{1}{\omega}},\lambda_{1}^{\frac{1}{n}}}E_{1}, \\ E_{1}E_{2} &= E_{2}E_{1} + \frac{1}{n}E_{1} \end{split}$$
for all $\lambda^{\frac{1}{\omega}}, \lambda^{\frac{1}{n}}, \lambda^{\frac{1}{\omega}}, \lambda^{\frac{1}{n}}, \lambda^{\frac{1}{\omega}}, \lambda^{\frac{1}{n}}, \lambda^{\frac{1}{\omega}}, \lambda^{\frac{1}{n}} \in \mathbb{k}^{*}. \end{split}$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

Generation for $B(n, \omega, \gamma)^{\circ}$

The comultiplication, counit and the antipode are given by

 $\Delta(E_1) = 1 \otimes E_1 + E_1 \otimes \psi_{1,\gamma},$ $\Delta(E_2) = 1 \otimes E_2 + E_2 \otimes 1 - \sum_{k=1}^{n-1} E_1^{[k]} \otimes \psi_{1,\gamma}^k E_1^{[n-k]},$ $\Delta(\psi_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{n}}}) = (\psi_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{n}}} \otimes \psi_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{n}}})(1 \otimes 1 + (1-\lambda)\sum^{n-1} E_1^{[k]} \otimes \psi_{1,\gamma}^k E_1^{[n-k]}),$ $\varepsilon(\psi_{\lambda_1^{\perp},\lambda_1^{\perp}})=1, \ \varepsilon(E_1)=\varepsilon(E_2)=0,$ $S(E_1) = -\gamma^{n-1}\psi_{1,\gamma}^{n-1}E_1, \ S(E_2) = -E_2, \ S(\psi_{\lambda \downarrow i}, \lambda \mu) = \psi_{\lambda \downarrow i}, \lambda \mu$ for $\lambda^{\frac{1}{\omega}}, \lambda^{\frac{1}{n}} \in \mathbb{k}^*$, where $E_1^{[k]} := E_1^k / k!_{\mathcal{E}}$ for $1 \le k \le n-1$.

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, v, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Remarks

- The link-indecomposable component (Montgomery's sense) containing 1 is the Hopf subalgebra generated by $\psi_{1,\gamma}, E_2, E_1$.
- It is not regular!

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イポト イヨト イヨ

Remarks

The link-indecomposable component (Montgomery's sense) containing 1 is the Hopf subalgebra generated by ψ_{1,γ}, E₂, E₁.
 It is not regular!

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, v, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イポト イヨト イヨ

Remarks

- The link-indecomposable component (Montgomery's sense) containing 1 is the Hopf subalgebra generated by $\psi_{1,\gamma}, E_2, E_1$.
- It is not regular!

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

The Hopf algebra $D(m, d, \xi)$

- Let n, d be positive integers such that (1 + m)d is even, and ξ be a primitive 2mth root of 1. Define ω := md, γ := ξ².
- As an algebra, $D(m, d, \xi)$ is generated by $x^{\pm 1}, g, y, u_0, u_1, \cdots, u_{m-1}$ with relations

$$xx^{-1} = x^{-1}x = 1, gx = xg, yx = xy,$$

$$yg = \gamma gy, y^{m} = 1 - x^{w} = 1 - g^{m},$$

$$u_{i}x = x^{-1}u_{i}, yu_{i} = \phi_{i}u_{i+1} = \xi x^{d}u_{i}y, u_{i}g = \gamma^{i}x^{-2d}gu_{i},$$

where $\phi_i := 1 - \gamma^{-i-1} x^d$ and $0 \le i \le m - 1$, as well as:

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト 不得 とうほう イヨン

The Hopf algebra $D(m, d, \xi)$

- Let n, d be positive integers such that (1 + m)d is even, and ξ be a primitive 2mth root of 1. Define ω := md, γ := ξ².
- As an algebra, $D(m, d, \xi)$ is generated by $x^{\pm 1}, g, y, u_0, u_1, \cdots, u_{m-1}$ with relations

$$xx^{-1} = x^{-1}x = 1, \quad gx = xg, \quad yx = xy,$$

$$yg = \gamma gy, \quad y^{m} = 1 - x^{w} = 1 - g^{m},$$

$$u_{i}x = x^{-1}u_{i}, \quad yu_{i} = \phi_{i}u_{i+1} = \xi x^{d}u_{i}y, \quad u_{i}g = \gamma^{i}x^{-2d}gu_{i},$$

where $\phi_i := 1 - \gamma^{-i-1} x^d$ and $0 \le i \le m-1$, as well as:

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

The Hopf algebra $D(m, d, \xi)$

$$u_{i}u_{j} = \begin{cases} (-1)^{-j}\xi^{-j}\gamma^{\frac{j(j+1)}{2}}\frac{1}{m}x^{-\frac{1+m}{2}d}\phi_{i}\phi_{i+1}\cdots\phi_{m-2-j}y^{i+j}g \\ (i+j \le m-2) \\ (-1)^{-j}\xi^{-j}\gamma^{\frac{j(j+1)}{2}}\frac{1}{m}x^{-\frac{1+m}{2}d}y^{i+j}g \\ (i+j = m-1) \\ (-1)^{-j}\xi^{-j}\gamma^{\frac{j(j+1)}{2}}\frac{1}{m}x^{-\frac{1+m}{2}d}\phi_{i}\cdots\phi_{m-1}\phi_{0}\cdots\phi_{m-2-j}y^{i+j-m}g \\ (i+j \ge m) \end{cases}$$

where $\phi_i := 1 - \gamma^{-i-1} x^d$ and $0 \le i, j \le m - 1$.
For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イポト イヨト イヨト

Generators for $D(m, d, \xi)^{\circ}$

• $\{x^i g^j y^l, x^i g^j u_l \mid 0 \le i \le \omega - 1, j \in \mathbb{Z}, 0 \le l \le m - 1\}$ is a basis of $D(m, d, \xi)$.

• Construct:

$$\begin{split} &\zeta_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{m}}} : \left\{ \begin{array}{l} x^{i}g^{j}y^{l} \mapsto \delta_{l,0}\lambda^{\frac{i}{\omega}}\lambda^{\frac{j}{m}} \\ x^{i}g^{j}u_{l} \mapsto 0 \end{array} \right., \quad \chi_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{m}}} : \left\{ \begin{array}{l} x^{i}g^{j}y^{l} \mapsto 0 \\ x^{i}g^{j}u_{l} \mapsto \delta_{l,0}\lambda^{\frac{i}{\omega}}\lambda^{\frac{j}{m}} \end{array} \right. \\ &E_{2} : \left\{ \begin{array}{l} x^{i}g^{j}y^{l} \mapsto \delta_{l,0}(\frac{i}{\omega} + \frac{j}{m}) \\ x^{i}g^{j}u_{l} \mapsto \delta_{l,0}(\frac{i}{\omega} + \frac{j}{m}) \end{array} \right., \quad E_{1} : \left\{ \begin{array}{l} x^{i}g^{j}y^{l} \mapsto \delta_{l,1} \\ x^{i}g^{j}u_{l} \mapsto \frac{\xi}{1-\gamma^{-1}}\delta_{l,1} \end{array} \right. , \end{split}$$

for any $\lambda \in \mathbb{k}^*$, where $\lambda^{\frac{1}{\omega}}$ and $\lambda^{\frac{1}{n}}$ denote arbitrary ω th and *n*th roots of λ respectively.

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イポト イヨト イヨト

Generators for $D(m, d, \xi)^{\circ}$

- $\{x^i g^j y^l, x^i g^j u_l \mid 0 \le i \le \omega 1, j \in \mathbb{Z}, 0 \le l \le m 1\}$ is a basis of $D(m, d, \xi)$.
- Construct:

$$\begin{split} \zeta_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{m}}} &: \begin{cases} x^{i}g^{j}y^{l} \mapsto \delta_{l,0}\lambda^{\frac{i}{\omega}}\lambda^{\frac{j}{m}} \\ x^{i}g^{j}u_{l} \mapsto 0 \end{cases}, \quad \chi_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{m}}} &: \begin{cases} x^{i}g^{j}y^{l} \mapsto 0 \\ x^{i}g^{j}u_{l} \mapsto \delta_{l,0}\lambda^{\frac{i}{\omega}}\lambda^{\frac{j}{m}} \\ x^{i}g^{j}u_{l} \mapsto \delta_{l,0}(\frac{i}{\omega} + \frac{j}{m}) \\ x^{i}g^{j}u_{l} \mapsto \delta_{l,0}(\frac{i}{\omega} + \frac{j}{m}) \end{cases}, \quad E_{1} : \begin{cases} x^{i}g^{j}y^{l} \mapsto \delta_{l,1} \\ x^{i}g^{j}u_{l} \mapsto \frac{\xi}{1-\gamma^{-1}}\delta_{l,1} \end{cases}, \end{split}$$

for any $\lambda \in \mathbb{k}^*$, where $\lambda^{\frac{1}{\omega}}$ and $\lambda^{\frac{1}{n}}$ denote arbitrary ω th and *n*th roots of λ respectively.

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イポト イヨト イヨト

Generation for $D(m, d, \xi)^{\circ}$

As an algebra, $D(m, d, \xi)^{\circ}$ is generated by $\zeta_{\lambda \overline{\omega}, \lambda \overline{n}}^{\dagger}$, $\chi_{\lambda \overline{\omega}, \lambda \overline{n}}^{\dagger}$, E_2, E_1 with relations

$$\begin{split} &\zeta_{\lambda_{1}^{\frac{1}{\omega}},\lambda_{1}^{\frac{1}{m}}}\zeta_{\lambda_{2}^{\frac{1}{\omega}},\lambda_{2}^{\frac{1}{m}}} = \zeta_{(\lambda_{1}^{\frac{1}{\omega}},\lambda_{2}^{\frac{1}{\omega}}),(\lambda_{1}^{\frac{1}{m}},\lambda_{2}^{\frac{1}{m}})}, \quad \chi_{\lambda_{1}^{\frac{1}{\omega}},\lambda_{1}^{\frac{1}{m}}}\chi_{\lambda_{2}^{\frac{1}{\omega}},\lambda_{2}^{\frac{1}{m}}} = \chi_{(\lambda_{1}^{\frac{1}{\omega}},\lambda_{2}^{\frac{1}{\omega}}),(\lambda_{1}^{\frac{1}{m}},\lambda_{2}^{\frac{1}{m}})}, \\ &\zeta_{\lambda_{1}^{\frac{1}{\omega}},\lambda_{1}^{\frac{1}{m}}}\chi_{\lambda_{2}^{\frac{1}{\omega}},\lambda_{2}^{\frac{1}{m}}} = \chi_{\lambda_{1}^{\frac{1}{\omega}},\lambda_{1}^{\frac{1}{m}}}\zeta_{\lambda_{2}^{\frac{1}{\omega}},\lambda_{2}^{\frac{1}{m}}} = 0, \quad E_{1}E_{2} = E_{2}E_{1} + \frac{1}{m}\zeta_{1,1}E_{1}, \\ &E_{2}\zeta_{\lambda_{1}^{\frac{1}{\omega}},\lambda_{1}^{\frac{1}{m}}} = \zeta_{\lambda_{1}^{\frac{1}{\omega}},\lambda_{1}^{\frac{1}{m}}}E_{2}, \quad E_{1}\zeta_{\lambda_{2}^{\frac{1}{\omega}},\lambda_{2}^{\frac{1}{m}}} = \lambda^{\frac{1}{m}}\zeta_{\lambda_{1}^{\frac{1}{\omega}},\lambda_{1}^{\frac{1}{m}}}E_{1}, \\ &E_{2}\chi_{\lambda_{1}^{\frac{1}{\omega}},\lambda_{1}^{\frac{1}{m}}} = \chi_{\lambda_{1}^{\frac{1}{\omega}},\lambda_{1}^{\frac{1}{m}}}E_{2}, \quad E_{1}\chi_{\lambda_{1}^{\frac{1}{\omega}},\lambda_{1}^{\frac{1}{m}}} = \lambda^{\frac{-d}{\omega}}\lambda^{\frac{1}{m}}\chi_{\lambda_{1}^{\frac{1}{\omega}},\lambda_{1}^{\frac{1}{m}}}E_{1}, \\ &E_{2}\chi_{\lambda_{1}^{\frac{1}{\omega}},\lambda_{1}^{\frac{1}{m}}} = \chi_{\lambda_{1}^{\frac{1}{\omega}},\lambda_{1}^{\frac{1}{m}}}E_{2}, \quad E_{1}\chi_{\lambda_{1}^{\frac{1}{\omega}},\lambda_{1}^{\frac{1}{m}}} = \lambda^{\frac{-d}{\omega}}\lambda^{\frac{1}{m}}\chi_{\lambda_{1}^{\frac{1}{\omega},\lambda_{1}^{\frac{1}{m}}}E_{1}, \\ &E_{2}\chi_{\lambda_{1}^{\frac{1}{\omega}},\lambda_{1}^{\frac{1}{m}}} = \chi_{\lambda_{1}^{\frac{1}{\omega},\lambda_{1}^{\frac{1}{m}}}E_{2}, \quad E_{1}\chi_{\lambda_{1}^{\frac{1}{\omega},\lambda_{1}^{\frac{1}{m}}}} = \lambda^{\frac{-d}{\omega}}\lambda^{\frac{1}{m}}\chi_{\lambda_{1}^{\frac{1}{\omega},\lambda_{1}^{\frac{1}{m}}}E_{1}, \\ &E_{1,1} + \chi_{1,1} = 1, \quad E_{1}^{m} = \frac{1}{(1-\gamma)^{m}}\chi_{1,1}, \\ &\text{for } \lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{m}},\lambda_{1}^{\frac{1}{\omega}},\lambda_{1}^{\frac{1}{m}},\lambda_{2}^{\frac{1}{\omega}},\lambda_{2}^{\frac{1}{m}}} \in \mathbb{K}^{*}. \end{split}$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イ理ト イヨト イヨト

Generation for $D(m, d, \xi)^{\circ}$

• Denote $E_1^{[k]} := E_1^k / k!_{\gamma}$ for $1 \le k \le m - 1$. The comultiplication is given by:

$$\begin{split} \Delta(E_1) &= 1 \otimes E_1 + E_1 \otimes (\zeta_{1,\gamma} + \xi \chi_{1,\gamma}), \\ \Delta(E_2) &= (\zeta_{1,1} - \chi_{1,1}) \otimes E_2 + E_2 \otimes 1 \\ &+ \sum_{k=1}^{m-1} (\zeta_{1,1} - \chi_{1,1}) E_1^{[k]} \otimes (\zeta_{1,\gamma} + \xi \chi_{1,\gamma})^k E_1^{[m-k]}. \end{split}$$

• We remark that $\zeta_{1,1} - \chi_{1,1} = (\zeta_{1,\gamma} + \xi \chi_{1,\gamma})^m$. Also,

$$\Delta(\zeta_{1,\gamma}+\xi\chi_{1,\gamma})=(\zeta_{1,\gamma}+\xi\chi_{1,\gamma})\otimes(\zeta_{1,\gamma}+\xi\chi_{1,\gamma}).$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Generation for $D(m, d, \xi)^{\circ}$

Suppose $(\lambda^{\frac{1}{\omega}})^d = \lambda^{\frac{1}{m}}$. Then $\Delta(\zeta_{\lambda \frac{1}{w},\lambda \frac{1}{w}})$ $= \zeta_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{m}}} \otimes \zeta_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{m}}} + (1-\lambda) \sum_{l=1}^{n-1} \zeta_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{m}}} E_1^{[k]} \otimes \zeta_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{m}}} \zeta_{l,\gamma}^k E_1^{[n-k]}$ $+(1-\lambda)\lambda^{\frac{(1-m)d/2}{\omega}}(\frac{1/m}{1-\lambda^{\frac{1}{m}}}\chi_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{m}}}\otimes\chi_{\lambda^{\frac{-1}{\omega}},\lambda^{\frac{-1}{m}}}$ $+\sum_{l=1}^{m-1}\frac{1-\gamma^{-k}}{1-\gamma^{-k}\lambda^{\frac{l}{m}}}\chi_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{m}}}E_1^{[k]}\otimes\chi_{\lambda^{\frac{-1}{\omega}},\lambda^{\frac{-1}{m}}}\xi^k\chi_{1,\gamma}^kE_1^{[m-k]}).$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

▲□▶ ▲圖▶ ▲厘▶

- ₹ € ►

Generation for $D(m, d, \xi)^{\circ}$

Suppose $(\lambda^{\frac{1}{\omega}})^d = \lambda^{\frac{1}{m}}$. Then

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

Generation for $D(m, d, \xi)^{\circ}$

• The coproduct on $\zeta_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{m}}}$ for arbitrary $\lambda^{\frac{1}{\omega}}$ and $\lambda^{\frac{1}{m}}$ is defined as $\Delta(\zeta_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{d}{\omega}}})\Delta(\zeta_{1,\gamma}+\xi\chi_{1,\gamma})^k$, where k is a non-negative integer such that $\lambda^{\frac{1}{m}} = \lambda^{\frac{d}{\omega}}\gamma^k$. Similar definition is given for $\chi_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{m}}}$.

• The counit and antipode:

$$\begin{split} \varepsilon(\zeta_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{m}}}) &= 1, \quad \varepsilon(\chi_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{m}}}) = 0, \quad \varepsilon(E_1) = \varepsilon(E_2) = 0. \\ S(E_1) &= -\gamma^{-1}(\zeta_{1,\gamma^{-1}} + \xi^{-1}\chi_{1,\gamma^{-1}})E_1, \\ S(E_2) &= -\zeta_{1,1}E_2 + \chi_{1,1}E_2 + \frac{1-m}{2m}\chi_{1,1}, \\ S(\zeta_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{m}}}) &= \zeta_{\lambda^{\frac{-1}{\omega}},\lambda^{\frac{-1}{m}}}, \\ S(\zeta_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{m}}}) &= \lambda^{\frac{(1-m)d/2}{\omega}}\chi_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{m}}} \quad \text{when } (\lambda^{\frac{1}{\omega}})^d = \lambda^{\frac{1}{m}}. \end{split}$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, \nu, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

Generation for $D(m, d, \xi)^{\circ}$

- The coproduct on $\zeta_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{m}}}$ for arbitrary $\lambda^{\frac{1}{\omega}}$ and $\lambda^{\frac{1}{m}}$ is defined as $\Delta(\zeta_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{d}{\omega}}})\Delta(\zeta_{1,\gamma}+\xi\chi_{1,\gamma})^k$, where k is a non-negative integer such that $\lambda^{\frac{1}{m}} = \lambda^{\frac{d}{\omega}}\gamma^k$. Similar definition is given for $\chi_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{m}}}$.
- The counit and antipode:

$$\begin{split} \varepsilon(\zeta_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{m}}}) &= 1, \quad \varepsilon(\chi_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{m}}}) = 0, \quad \varepsilon(E_1) = \varepsilon(E_2) = 0. \\ S(E_1) &= -\gamma^{-1}(\zeta_{1,\gamma^{-1}} + \xi^{-1}\chi_{1,\gamma^{-1}})E_1, \\ S(E_2) &= -\zeta_{1,1}E_2 + \chi_{1,1}E_2 + \frac{1-m}{2m}\chi_{1,1}, \\ S(\zeta_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{m}}}) &= \zeta_{\lambda^{\frac{-1}{\omega}},\lambda^{\frac{-1}{m}}}, \\ S(\chi_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{m}}}) &= \lambda^{\frac{(1-m)d/2}{\omega}}\chi_{\lambda^{\frac{1}{\omega}},\lambda^{\frac{1}{m}}} \quad \text{when } (\lambda^{\frac{1}{\omega}})^d = \lambda^{\frac{1}{m}}. \end{split}$$

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, v, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Remarks

- The link-indecomposable component (Montgomery's sense) containing 1 is the Hopf subalgebra generated by ζ_{1,γ}, χ_{1,γ}, E₂, E₁.
- It is not regular!

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, v, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イポト イヨト イヨ

Remarks

- The link-indecomposable component (Montgomery's sense) containing 1 is the Hopf subalgebra generated by ζ_{1,γ}, χ_{1,γ}, E₂, E₁.
- It is not regular!

For infinite dihedral group algebra \mathbb{kD}_{∞} For infinite dimensional Taft algebra $T_{\infty}(n, v, \xi)$ For generalized Liu algebra $B(n, \omega, \gamma)$ For the Hopf algebra $D(m, d, \xi)$

イロト イポト イヨト イヨ

Remarks

- The link-indecomposable component (Montgomery's sense) containing 1 is the Hopf subalgebra generated by $\zeta_{1,\gamma}, \chi_{1,\gamma}, E_2, E_1$.
- It is not regular!

Outline

1 Motivations

Determination of the finite duals

- For infinite dihedral group algebra $k\mathbb{D}_{\infty}$
- For infinite dimensional Taft algebra $T_{\infty}(n, v, \xi)$
- For generalized Liu algebra $B(n, \omega, \gamma)$
- For the Hopf algebra $D(m, d, \xi)$

3 Some consequences

Direct consequences

• Let *H* be a prime regular Hopf algebra of GK-dim one and H^{\bullet} the link-indecomposable component containing 1 of H° . Then we have

Proposition

- (1) The Hopf algebra H^{\bullet} has GK-dimension one.
- Hopf algebras (kD_∞)[•], T_∞(n, v, ξ)[•], B(n, ω, γ)[•] and D(m, d, ξ)[•] are all pointed.
- (3) The Hopf algebra $(\mathbb{k}\mathbb{D}_{\infty})^{\bullet}$ is regular while $T_{\infty}(n, v, \xi)^{\bullet}$, $B(n, \omega, \gamma)^{\bullet}$ and $D(m, d, \xi)^{\bullet}$ are not when $n, m \ge 2$.

Direct consequences

• Let *H* be a prime regular Hopf algebra of GK-dim one and *H*[•] the link-indecomposable component containing 1 of *H*[°]. Then we have

Proposition

- (1) The Hopf algebra H^{\bullet} has GK-dimension one.
- (2) Hopf algebras $(\mathbb{k}\mathbb{D}_{\infty})^{\bullet}$, $T_{\infty}(n, v, \xi)^{\bullet}$, $B(n, \omega, \gamma)^{\bullet}$ and $D(m, d, \xi)^{\bullet}$ are all pointed.
- (3) The Hopf algebra $(\mathbb{k}\mathbb{D}_{\infty})^{\bullet}$ is regular while $T_{\infty}(n,v,\xi)^{\bullet}$, $B(n,\omega,\gamma)^{\bullet}$ and $D(m,d,\xi)^{\bullet}$ are not when $n,m \geq 2$.

Remarks

- Naturally, (H, H^{\bullet}) is a nondegenerate Hopf pairing and thus a quantum group in the Takeuchi's sense.
- *H*[•] is "unique" in the following sense: *H*[•] has the same GK-dim as *H* and is minimal under containing relation. This might be a version negating the semisimplicity result by Larson and Radford in infinite-dimensional cases.
- For a prime regular Hopf algebra *H* of GK-dim one, one can find two nondegenerate Hopf pairings (*H*, *H*₁), (*H*, *H*₂) with *H*₁ ≇ *H*₂.

Remarks

- Naturally, (H, H^{\bullet}) is a nondegenerate Hopf pairing and thus a quantum group in the Takeuchi's sense.
- *H*[•] is "unique" in the following sense: *H*[•] has the same GK-dim as *H* and is minimal under containing relation. This might be a version negating the semisimplicity result by Larson and Radford in infinite-dimensional cases.
- For a prime regular Hopf algebra *H* of GK-dim one, one can find two nondegenerate Hopf pairings (*H*, *H*₁), (*H*, *H*₂) with *H*₁ ≇ *H*₂.

Remarks

- Naturally, (H, H^{\bullet}) is a nondegenerate Hopf pairing and thus a quantum group in the Takeuchi's sense.
- *H*[•] is "unique" in the following sense: *H*[•] has the same GK-dim as *H* and is minimal under containing relation. This might be a version negating the semisimplicity result by Larson and Radford in infinite-dimensional cases.
- For a prime regular Hopf algebra *H* of GK-dim one, one can find two nondegenerate Hopf pairings (*H*, *H*₁), (*H*, *H*₂) with *H*₁ ≇ *H*₂.

Remarks

- Naturally, (H, H^{\bullet}) is a nondegenerate Hopf pairing and thus a quantum group in the Takeuchi's sense.
- *H*[•] is "unique" in the following sense: *H*[•] has the same GK-dim as *H* and is minimal under containing relation. This might be a version negating the semisimplicity result by Larson and Radford in infinite-dimensional cases.
- For a prime regular Hopf algebra *H* of GK-dim one, one can find two nondegenerate Hopf pairings (*H*, *H*₁), (*H*, *H*₂) with *H*₁ ≇ *H*₂.

Remarks

- Naturally, (H, H^{\bullet}) is a nondegenerate Hopf pairing and thus a quantum group in the Takeuchi's sense.
- *H*[•] is "unique" in the following sense: *H*[•] has the same GK-dim as *H* and is minimal under containing relation. This might be a version negating the semisimplicity result by Larson and Radford in infinite-dimensional cases.
- For a prime regular Hopf algebra *H* of GK-dim one, one can find two nondegenerate Hopf pairings (*H*, *H*₁), (*H*, *H*₂) with *H*₁ ≇ *H*₂.

< ロ > < 同 > < 回 > < 回 > < 回 >

Questions

• We pose several questions as follows:

- For a general infinite-dimensional Hopf algebra H which is residually finite-dimensional, when does a minimal Hopf algebra H^o forming a non-degenerate Hopf pairing over H exist?
- When are such minimal Hopf algebras *H*[•] unique and of the same GK-dimensions with *H*?
- What can you say something about the Rep- (H, H^{\bullet}) ?

/□ ▶ ∢ ∃ ▶

- We pose several questions as follows:
- For a general infinite-dimensional Hopf algebra *H* which is residually finite-dimensional, when does a minimal Hopf algebra *H*[•] forming a non-degenerate Hopf pairing over *H* exist?
- When are such minimal Hopf algebras *H*[•] unique and of the same GK-dimensions with *H*?
- What can you say something about the Rep- (H, H^{\bullet}) ?

/□ ▶ ∢ ∃ ▶

- We pose several questions as follows:
- For a general infinite-dimensional Hopf algebra *H* which is residually finite-dimensional, when does a minimal Hopf algebra *H*[•] forming a non-degenerate Hopf pairing over *H* exist?
- When are such minimal Hopf algebras *H*[•] unique and of the same GK-dimensions with *H*?
- What can you say something about the Rep- (H, H^{\bullet}) ?

/□ ▶ ∢ ∃ ▶

- We pose several questions as follows:
- For a general infinite-dimensional Hopf algebra *H* which is residually finite-dimensional, when does a minimal Hopf algebra *H*[•] forming a non-degenerate Hopf pairing over *H* exist?
- When are such minimal Hopf algebras *H*[•] unique and of the same GK-dimensions with *H*?
- What can you say something about the Rep- (H, H^{\bullet}) ?

• Thanks for your attention!