Cohen-Macaulay modules of quotient singularities

何济位

(杭州师范大学)

2021 Hopf代数会议 8月24日

Based on joint works with Ye Yu and Ma Xinchao

3 N

- (I) Motivations
- (II) Noncommutative quadric hypersurfaces
- (III) Clifford deformations
- (IV) Generalized Knörrer's periodicity theorem

(E)

(I) Motivations

æ

• **k** is an algebraically closed field of characteristic zero.

-

- $\bullet~{\rm I\!k}$ is an algebraically closed field of characteristic zero.
- Connected graded algebra: $A = \bigoplus_{n \in \mathbb{N}} A_n$ such that $A_0 = \mathbb{k}$.

Basic settings

- **k** is an algebraically closed field of characteristic zero.
- Connected graded algebra: $A = \bigoplus_{n \in \mathbb{N}} A_n$ such that $A_0 = \mathbb{k}$.
- A noetherian connected graded algebra A is called an Artin-Schelter Gorenstein algebra if (1) injdim_AA=injdim_A_A = $d < \infty$
 - (2) $\operatorname{Ext}_{\mathcal{A}}^{n}(\mathbb{k},\mathcal{A}) = 0$ if $n \neq d$, and $\operatorname{Ext}_{\mathcal{A}}^{d}(\mathbb{k},\mathcal{A}) \cong \mathbb{k}$.

If further, $\operatorname{gldim} A = d$, then A is called an Artin-Schelter regular algebra.

通 と イ ヨ と イ ヨ と

Basic settings

- **k** is an algebraically closed field of characteristic zero.
- Connected graded algebra: $A = \bigoplus_{n \in \mathbb{N}} A_n$ such that $A_0 = \mathbb{k}$.
- A noetherian connected graded algebra A is called an Artin-Schelter Gorenstein algebra if (1) injdim_AA=injdim $A_A = d < \infty$
 - (1) Injam_AA=injam_A_A = $d < \infty$ (2) Ext^{*n*}_A(\mathbb{k} , A) = 0 if $n \neq d$, and Ext^{*d*}_A(\mathbb{k} , A) \cong \mathbb{k} .

If further, $\operatorname{gldim} A = d$, then A is called an Artin-Schelter regular algebra.

• AS-regulars algebras: $A = \mathbb{k}[x_1, \dots, x_n].$ $A = \mathbb{k}_{q_{ij}}[x_1, \dots, x_n] = \mathbb{k}\langle x_1, \dots, x_n \rangle / (x_i x_j - q_{ij} x_i x_j : i < j, q_{ij} \neq 0).$

AS-Gorenstein algebra: $A = \mathbf{k}[x, y, z]/(xy - z^2)$.

• • = • • = •

Finite group (Semisimple Hopf algebra) actions

• $G \leq Aut_{gr}A$ a finite subgroup.

Question: If A is AS-regular, is it possible that the invariant subalgebra A^G (:= { $a \in A | g(a) = a, \forall g \in G$ }) is still AS-regular?

Finite group (Semisimple Hopf algebra) actions

• $G \leq Aut_{gr}A$ a finite subgroup.

Question: If A is AS-regular, is it possible that the invariant subalgebra A^G (:= { $a \in A | g(a) = a, \forall g \in G$ }) is still AS-regular?

• Let A be a connected graded algebra.

A is called a Koszul algebra if the trivial module \Bbbk_A has a graded free resolution

$$0 \longleftarrow \mathbb{k}_A \longleftarrow P_0 \longleftarrow P_1 \longleftarrow \cdots \longleftarrow P_n \longleftarrow \cdots$$

such that P_n is generated in degree n.

Finite group (Semisimple Hopf algebra) actions

• $G \leq Aut_{gr}A$ a finite subgroup.

Question: If A is AS-regular, is it possible that the invariant subalgebra A^G (:= { $a \in A | g(a) = a, \forall g \in G$ }) is still AS-regular?

 \bullet Let A be a connected graded algebra.

A is called a Koszul algebra if the trivial module \Bbbk_A has a graded free resolution

$$0 \longleftarrow \mathbb{k}_A \longleftarrow P_0 \longleftarrow P_1 \longleftarrow \cdots \longleftarrow P_n \longleftarrow \cdots$$

such that P_n is generated in degree n.

A quantum polynomial algebra is a Koszul Artin-Schelter regular algebra A such that
(1) H_A(t) = (1 − t)⁻ⁿ for some n ≥ 1,
(2) A is a domain.

$$H_A(t) = \sum_{n\geq 0} t^n \dim A_n.$$

白 ト イ ヨ ト イ ヨ

Theorem

Let A be a quantum polynomial algebra, and let $G \leq Aut_{gr}(A)$ be a finite subgroup.

(i) Assume A is a polynomial algebra, then A^G is of finite global dimension if and only if G is generated by pseudo-reflections.

(ii) Assume G is an abelian group. Then A^G is AS-regular if and only if G is generated by "noncommutative" pseudo-reflections.

 G.C. Shephard, J.A. Todd, Finite unitary reflections groups, Canadian J. Math. 6 (1954), 274-304.

E. Kirkman, J. Kuzmanovich, J.J. Zhang, Shephard-Todd-Chevalley Theorem for skew

polynomial rings, Algebra Repr. Theory 13 (2010), 127-158.

(4月) (1日) (日)

Gorenstein invariant subalgebras

• Question: what if A^G is not AS-regular?

Gorenstein invariant subalgebras

• Question: what if A^G is not AS-regular?

Theorem

Let A be an AS-regular algebra, and let $G \leq Aut_{gr}(A)$ be a finite subgroup. If the homological determinant of G is trivial, then A^G is AS-Gorenstein.

 P. Jørgensen, J.J. Zhang, Gourmet's guide to Gorensteinness, Adv. Math. 151 (2000), 313-345. • Question: what if A^G is not AS-regular?

Theorem

Let A be an AS-regular algebra, and let $G \leq Aut_{gr}(A)$ be a finite subgroup. If the homological determinant of G is trivial, then A^G is AS-Gorenstein.

- P. Jørgensen, J.J. Zhang, Gourmet's guide to Gorensteinness, Adv. Math. 151 (2000), 313-345.
- **Remark.** The above result has been generalized to semisimple Hopf algebra actions by many authors: E. Kirkman, J. Kuzmanovich, Q.-S. Wu, J.J. Zhang, R. Zhu, etc.

伺 ト イ ヨ ト イ ヨ ト

Theorem

Let H be a semisimple Hopf algebra, A an AS-regular algebra of global dimension 2. Assume that H acts on A, and the homological determinant is trivial. Then $A^G \cong B/Bf$, for some AS-regular algebra of global dimension 3 and $f \in B$ is a normal regular element.

D. Chan, E. Kirkman, C. Walton, J.J. Zhang, Quantum binary polyhedral groups and their

actions on quantum planes, J. reine angew. Math. 719 (2016), 211-252

Theorem

Let H be a semisimple Hopf algebra, A an AS-regular algebra of global dimension 2. Assume that H acts on A, and the homological determinant is trivial. Then $A^G \cong B/Bf$, for some AS-regular algebra of global dimension 3 and $f \in B$ is a normal regular element.

- D. Chan, E. Kirkman, C. Walton, J.J. Zhang, Quantum binary polyhedral groups and their actions on quantum planes, J. reine angew. Math. 719 (2016), 211–252
- Example. $A = \mathbb{k}[x, y], \ G = \langle g \rangle, \ g : x \mapsto -x, y \mapsto -y.$ Then $A^G \cong \mathbb{k}[x, y, z]/(xy - z^2).$

伺 ト イ ヨ ト イ ヨ ト

I ≡ ▶ < </p>

• Let A be a quantum polynomial algebra. Let $f \in A_2$ be a central element of A.

Define $A_f := A/Af$.

- Let A be a quantum polynomial algebra. Let $f \in A_2$ be a central element of A. Define $A_f := A/Af$.
- A_f is called a noncommutative quadric hypersurface.

- Let A be a quantum polynomial algebra. Let $f \in A_2$ be a central element of A. Define $A_f := A/Af$.
- A_f is called a noncommutative quadric hypersurface.
- Fact.

(1) A_f is a Koszul algebra.

(2) If A is of global dimension d, then A_f is an Artin-Schelter Gorenstein algebra of injective dimension d-1.

- Let A be a quantum polynomial algebra. Let $f \in A_2$ be a central element of A. Define $A_f := A/Af$.
- A_f is called a noncommutative quadric hypersurface.
- Fact.

(1) A_f is a Koszul algebra.

(2) If A is of global dimension d, then A_f is an Artin-Schelter Gorenstein algebra of injective dimension d-1.

•
$$A = \mathbb{k}[x, y], f = x^2 + y^2, A_f$$

 $A' = \mathbb{k}_{-1}[x, y], f = x^2 + y^2, A'_f$

 $\bullet~R$ a noetherian connected graded algebra.

 $\operatorname{\mathsf{gr}} R$, category of finitely generated graded right R-modules $\operatorname{\mathsf{tor}} R$, full subcategory of $\operatorname{\mathsf{gr}} R$ consisting of finite dimensional modules

qgr $R = \operatorname{gr} R / \operatorname{tor} R$.

伺 ト く ヨ ト く ヨ ト

 $\bullet~R$ a noetherian connected graded algebra.

 $\operatorname{gr} R$, category of finitely generated graded right *R*-modules tor *R*, full subcategory of $\operatorname{gr} R$ consisting of finite dimensional modules

qgr $R = \operatorname{gr} R / \operatorname{tor} R$.

• For
$$M \in \operatorname{gr} R$$
, let
 $\Gamma(M) = \{m \in M | mA \text{ is finite dimensional} \}.$

The *i*-th right derived functor of Γ is denoted by $R^i \Gamma$.

For $M \in \operatorname{gr} R$, the *depth* of *M* is defined to be the number

 $depth(M) = \min\{i | R^i \Gamma(M) \neq 0\}.$

伺 ト イ ヨ ト イ ヨ ト

• Suppose that R is an Artin-Schelter Gorenstein algebra with injdim R_R =injdim $_R R = d$.

 $M \in \operatorname{gr} R$ is called a maximal Cohen-Macaulay module (MCM module) if depth(M) = d.

伺 ト く ヨ ト く ヨ ト

• Suppose that R is an Artin-Schelter Gorenstein algebra with injdim R_R =injdim $_R R = d$.

 $M \in \operatorname{gr} R$ is called a maximal Cohen-Macaulay module (MCM module) if depth(M) = d.

• mcm R the category of all the MCM over R.

mcm R is a Frobenius category, hence the stable category $\underline{mcm}R$ is a triangulated category.

The category $\underline{\mathsf{mcm}}R$ is sometimes called the singularity category of R.

伺 ト く ヨ ト く ヨ ト

• Suppose that R is an Artin-Schelter Gorenstein algebra with injdim R_R =injdim $_R R = d$.

 $M \in \operatorname{gr} R$ is called a maximal Cohen-Macaulay module (MCM module) if depth(M) = d.

• mcm R the category of all the MCM over R.

mcm R is a Frobenius category, hence the stable category $\underline{mcm}R$ is a triangulated category.

The category $\underline{\mathsf{mcm}}R$ is sometimes called the singularity category of R.

• Let A be a quantum polynomial algebra, $f \in A_2$ is a central element.

Aim: to understand the category $\underline{mcm}A_f$?

伺 ト イヨト イヨト

• Suppose that R is an Artin-Schelter Gorenstein algebra with injdim R_R =injdim $_R R = d$.

 $M \in \operatorname{gr} R$ is called a maximal Cohen-Macaulay module (MCM module) if depth(M) = d.

• mcm R the category of all the MCM over R.

mcm R is a Frobenius category, hence the stable category $\underline{mcm}R$ is a triangulated category.

The category $\underline{\mathsf{mcm}}R$ is sometimes called the singularity category of R.

• Let A be a quantum polynomial algebra, $f \in A_2$ is a central element.

Aim: to understand the category $\underline{mcm}A_f$?

• Example. $A = \mathbb{k}[x, y], A' = \mathbb{k}_{-1}[x, y], f = x^2 + y^2.$ $\underline{\mathrm{mcm}} A_f \cong \underline{\mathrm{mcm}} A'_f \cong D^b(\mathbb{k} \times \mathbb{k}).$ • A fundamental result:

Theorem

Let A be a quantum polynomial algebra and let $f \in A_2$ be a central element. Then there is a finite dimensional algebra $C(A_f)$ such that there is an equivalence of triangulated categories

 $D^b(C(A_f))\cong \underline{\mathrm{mcm}}A_f.$

S. P. Smith, M. Van den Bergh, Noncommutative quadric surfaces, J. Noncommut. Geom. 7 (2013), 817–856.

A B > A B >

• A fundamental result:

Theorem

Let A be a quantum polynomial algebra and let $f \in A_2$ be a central element. Then there is a finite dimensional algebra $C(A_f)$ such that there is an equivalence of triangulated categories

 $D^b(C(A_f))\cong \underline{\mathrm{mcm}}A_f.$

S. P. Smith, M. Van den Bergh, Noncommutative quadric surfaces, J. Noncommut. Geom. 7 (2013), 817–856.

• Problems:

(1) find a way to compute $C(A_f)$; (2) Let $A = \mathbb{k}[x, y]$ and $A' = \mathbb{k}_{-1}[x, y]$, and let $f = x^2 + y^2$. Note that $C(A_f) \cong C(A'_f) \cong \mathbb{k} \times \mathbb{k}$. So, how can we recognize the difference between A_f and A'_f ?

伺 ト く ヨ ト く ヨ ト

(III) Clifford deformations

- ★ 臣 ▶ - ★ 臣

A ►

- Let V be a finite dimensional vector space, and let E = T(V)/(R) be a Koszul algebra, where $R \subseteq V \otimes V$.
 - A linear map $\theta: R \to \Bbbk$ is called a Clifford map if

 $(\theta \otimes 1 - 1 \otimes \theta)(V \otimes R \cap R \otimes V) = 0.$

通 と イ ヨ と イ ヨ と

• Let V be a finite dimensional vector space, and let E = T(V)/(R) be a Koszul algebra, where $R \subseteq V \otimes V$.

A linear map $\theta: R \to \Bbbk$ is called a Clifford map if

 $(\theta \otimes 1 - 1 \otimes \theta)(V \otimes R \cap R \otimes V) = 0.$

• Define: $E(\theta) = T(V)/(r - \theta(r) : r \in R)$.

通 と イ ヨ と イ ヨ と

• Let V be a finite dimensional vector space, and let E = T(V)/(R) be a Koszul algebra, where $R \subseteq V \otimes V$.

A linear map $\theta: R \to \mathbbm{k}$ is called a Clifford map if

 $(\theta \otimes 1 - 1 \otimes \theta)(V \otimes R \cap R \otimes V) = 0.$

- Define: $E(\theta) = T(V)/(r \theta(r) : r \in R)$.
- We call $E(\theta)$ a Clifford deformation of E.

• • • • • • •

• Let V be a finite dimensional vector space, and let E = T(V)/(R) be a Koszul algebra, where $R \subseteq V \otimes V$.

A linear map $\theta: R \to \mathbbm{k}$ is called a Clifford map if

 $(\theta \otimes 1 - 1 \otimes \theta)(V \otimes R \cap R \otimes V) = 0.$

- Define: $E(\theta) = T(V)/(r \theta(r) : r \in R)$.
- We call $E(\theta)$ a Clifford deformation of E.
- Note that a Clifford deformation is a special case of Poicaré-Birkhoff-Witt deformations.

• • • • • • •

• Let V be a finite dimensional vector space, and let E = T(V)/(R) be a Koszul algebra, where $R \subseteq V \otimes V$.

A linear map $\theta: R \to \mathbbm{k}$ is called a Clifford map if

 $(\theta \otimes 1 - 1 \otimes \theta)(V \otimes R \cap R \otimes V) = 0.$

- Define: $E(\theta) = T(V)/(r \theta(r) : r \in R)$.
- We call $E(\theta)$ a Clifford deformation of E.
- Note that a Clifford deformation is a special case of Poicaré-Birkhoff-Witt deformations.
- The usual Clifford algebra

$$\mathbb{R}^{p,q}_n = \mathbb{R}\langle x_1,\ldots,x_n
angle/(x_i^2+1,x_j^2-1:1 \le i \le p,p+1 \le j \le p+q)$$

is a Clifford deformation of the exterior algebra $E = \bigwedge \{x_1, \dots, x_n\}.$

• Let A be a quantum polynomial algebra.

Proposition

Let $E = A^{!}$ be the quadratic dual of the quantum polynomial algebra A. Then E is a Koszul Frobenius algebra.

 $\pmb{\mathsf{S.P. Smith}},$ Some finite dimensional algebras related to elliptic curves, in: CMS Conf. Proc., 1996

D.-M. Lu, J.H. Palmieri, Q.-S. Wu, J.J. Zhang, A_{∞} -algebra for ring theorist, Algebra Colloq.,

2004

同 ト イ ヨ ト イ ヨ ト

• Let A be a quantum polynomial algebra.

Proposition

Let $E = A^{!}$ be the quadratic dual of the quantum polynomial algebra A. Then E is a Koszul Frobenius algebra.

 $\pmb{\mathsf{S.P. Smith}},$ Some finite dimensional algebras related to elliptic curves, in: CMS Conf. Proc., 1996

D.-M. Lu, J.H. Palmieri, Q.-S. Wu, J.J. Zhang, A_{∞} -algebra for ring theorist, Algebra Colloq.,

2004

• We have the following facts:

Proposition

- Each central element $0 \neq f \in A_2$ is corresponding to a Clifford map θ_f of $E = A^!$.
- The Clifford deformation $E(\theta_f)$ is a strongly \mathbb{Z}_2 -graded algebra.
- $C(A_f) \cong E(\theta_f)_0.$

Example

• Let $A = \mathbb{k}\langle x, y, z \rangle / (r_1, r_2, r_3)$, where $r_1 = zx + xz, r_2 = yz + zy, r_3 = x^2 + y^2$. Then A is a quantum polynomial algebra of dimension 3.

f	$C(A_f) = E(\theta_f)_0$
$z^2 + xy + yx + \lambda x^2$	k ⁴
$z^2 + xy + yx \pm 2\sqrt{-1}x^2$	$\mathbf{k}[u]/(u^2) \times \mathbf{k}[u]/(u^2)$
z ²	$k[u, v]/(u^2 - v^2, uv)$
$z^2 + x^2$	k ⁴
$xy + yx + \lambda x^2$	$\mathbf{k}[u]/(u^2) \times \mathbf{k}[u]/(u^2)$
$xy + yx \pm 2\sqrt{-1}x^2$	$\mathbf{k}[u,v]/(u^2,v^2)$
x ²	$\mathbf{k}[u]/(u^2) \times \mathbf{k}[u]/(u^2)$

Example

• Let $A = \mathbb{k}\langle x, y, z \rangle / (r_1, r_2, r_3)$, where $r_1 = zx + xz, r_2 = yz + zy, r_3 = x^2 + y^2$. Then A is a quantum polynomial algebra of dimension 3.

$C(A_f) = E(\theta_f)_0$
\mathbf{k}^4
$\mathbf{k}[u]/(u^2) \times \mathbf{k}[u]/(u^2)$
$k[u, v]/(u^2 - v^2, uv)$
\mathbf{k}^4
$\mathbf{k}[u]/(u^2) \times \mathbf{k}[u]/(u^2)$
$k[u, v]/(u^2, v^2)$
$\mathbf{k}[u]/(u^2) \times \mathbf{k}[u]/(u^2)$

• **Remark.** Let A be a quantum polynomial algebra of dimensional 3. If $f \in A_2$ is a central element, $A_f = A/Af$ is called a noncommutative conic. The algebras $C(A_f)$ have been classified for noncommutative conics.

 ${\sf H}.~{\sf Hu},$ Classification of noncommutative conics associated to symmetric regular superpotentials, arXiv:2005.03918.

H. Hu, M. Matsuno, I. Mori, Noncommutative conics in Calabi-Yau quantum planes,

arXiv:2104.00221.

・ロト ・同ト ・ヨト ・ヨト

Theorem

Let A be a quantum polynomial algebra, and let $f \in A_2$ be a central regular element.

Then qgr A_f has finite global dimension (i.e., proj A_f is smooth) if and only if $C(A_f) = E(\theta_f)_0$ is a semisimple algebra.

S. P. Smith, M. Van den Bergh, Noncommutative quadric surfaces, J. Noncommut. Geom. 7

(2013), 817-856.

J.-W. He, Y. Ye, Clifford deformations of Koszul Frobenius algebras and noncommutative quadrics, arxiv:1905.04699

I. Mori, K. Ueyama, Noncommutative Knörrer Periodicity Theorem and noncommutative

quadric hypersurfaces, arxiv:1905.12266

(人間) ト く ヨ ト く ヨ ト

(IV) Generalizations of Knörrer's periodicity theorem

→ 3 → 4 3

• Example. $A = \Bbbk[x, y], A' = \Bbbk_{-1}[x, y], f = x^2 + y^2$. Then $\underline{\mathrm{mcm}}(A_f) \cong \underline{\mathrm{mcm}}(A'_f) \cong D^b(\Bbbk \times \Bbbk)$.

伺 と く ヨ と く ヨ と

3

- Example. $A = \mathbb{k}[x, y], A' = \mathbb{k}_{-1}[x, y], f = x^2 + y^2$. Then $\underline{\mathrm{mcm}}(A_f) \cong \underline{\mathrm{mcm}}(A'_f) \cong D^b(\mathbb{k} \times \mathbb{k})$.
- Let B be a quantum polynomial algebra and $g \in B_2$ be a central element.

Consider the tensor algebra $B \otimes A$ and $B \otimes A'$, and view h := g + f as an element in $B \otimes A$ (or in $B \otimes A'$, resp.).

伺 ト イ ヨ ト イ ヨ ト

- Example. $A = \mathbb{k}[x, y], A' = \mathbb{k}_{-1}[x, y], f = x^2 + y^2$. Then $\underline{\mathrm{mcm}}(A_f) \cong \underline{\mathrm{mcm}}(A'_f) \cong D^b(\mathbb{k} \times \mathbb{k})$.
- Let B be a quantum polynomial algebra and $g \in B_2$ be a central element.

Consider the tensor algebra $B \otimes A$ and $B \otimes A'$, and view h := g + f as an element in $B \otimes A$ (or in $B \otimes A'$, resp.).

• Fact: $\underline{\mathrm{mcm}}(B \otimes A)_h$ is different from $\underline{\mathrm{mcm}}(B \otimes A')_h!$

くほし くほし くほし

- Example. $A = \mathbb{k}[x, y], A' = \mathbb{k}_{-1}[x, y], f = x^2 + y^2$. Then $\underline{\mathrm{mcm}}(A_f) \cong \underline{\mathrm{mcm}}(A'_f) \cong D^b(\mathbb{k} \times \mathbb{k})$.
- Let B be a quantum polynomial algebra and $g \in B_2$ be a central element.

Consider the tensor algebra $B \otimes A$ and $B \otimes A'$, and view h := g + f as an element in $B \otimes A$ (or in $B \otimes A'$, resp.).

- Fact: $\underline{\mathrm{mcm}}(B \otimes A)_h$ is different from $\underline{\mathrm{mcm}}(B \otimes A')_h!$
- The reason is the following:

Let E and E' be the Koszul dual of A and A' respectively.

The Clifford deformation of E and that of E' associated to f are very different!

Indeed, $E(\theta_f) \cong \mathbb{M}_2(\mathbb{k})$ and $E'(\theta_f) \cong \mathbb{k}\mathbb{Z}_2 \times \mathbb{k}\mathbb{Z}_2$.

伺 ト イ ヨ ト イ ヨ ト

• It seems reasonable to classify the noncommutative quadric hypersurfaces according the Clifford deformations.

Definition

Let A be a quantum polynomial algebra, and let $f \in A_2$ be a central element. Let E be the Koszul dual of A.

If the Clifford deformation $E(\theta_f)$ is a simple \mathbb{Z}_2 -graded algebra, then we call $A_f = A/Af$ is a simple graded isolated singularity.

- Since k is algebraically closed, there are only two classes of simple Z₂-graded algebra:
 - (0) matrix algebras over \mathbb{k} ;
 - (1) matrix algebras over $\mathbb{k}\mathbb{Z}_2$.

3.1

 Since k is algebraically closed, there are only two classes of simple Z₂-graded algebra:

(0) matrix algebras over \mathbf{k} ;

(1) matrix algebras over $\mathbb{k}\mathbb{Z}_2$.

• If $E(\theta_f)$ is a matrix algebra over \mathbb{I}_k , then we further call A_f is a simple graded isolated singularity of 0-type

If $E(\theta_f)$ is a matrix algebra over $\mathbb{k}\mathbb{Z}_2$, then we further call A_f is a simple graded isolated singularity of 1-type.

直 ト イヨ ト イヨ ト

- **Proposition.** Let A and B be quantum polynomial algebras, and let $f \in A_2$ and $g \in B_2$ be central elements. Suppose that $A \otimes B$ is noetherian. Let $h = f + g \in A \otimes B$.
 - If both A_f and B_f are simple graded isolated singularity of 1-type, then $(A \otimes B)_h$ is a simple graded isolated singularity of 0-type.
 - If A_f is a simple graded isolated singularity of 1-type and B is a simple graded isolated singularity of 0-type, then $(A \otimes B)_h$ is a simple graded isolated singularity of 1-type.
 - If both A_f and B_f are simple graded isolated singularity of 0-type, then $(A \otimes B)_h$ is a simple graded isolated singularity of 0-type.

(4月) (日) (日) 日

• A key lemma.

Lemma

Let A and B be quantum polynomial algebras, and let $f \in A_2$ and $g \in B_2$ be central elements. Suppose that $A \otimes B$ is noetherian. Let $h = f + g \in A \otimes B$.

Then we have an isomorphism of \mathbb{Z}_2 -graded algebras

$$E_{(A\otimes B)!}(\theta_h)\cong E_{A!}(\theta_f)\hat{\otimes}E_{B!}(\theta_g),$$

where $\hat{\otimes}$ is the \mathbb{Z}_2 -graded tensor.

• Let
$$A = \mathbb{k}[x, y]$$
, and $f = x^2 + y^2$. Then
 $E(\theta_f) \cong \mathbb{M}_2(\mathbb{k}),$

where $\mathbb{M}_2(\mathbf{k})$ is viewed as a \mathbb{Z}_2 -graded algebra by setting

$$\mathbb{M}_2(\mathbb{k})_0 = \left[egin{array}{cc} \mathbb{k} & 0 \ 0 & \mathbb{k} \end{array}
ight], \quad \mathbb{M}_2(\mathbb{k})_1 = \left[egin{array}{cc} 0 & \mathbb{k} \ \mathbb{k} & 0 \end{array}
ight].$$

Hence A_f is a simple graded isolated singularity of 0-type.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

• Let
$$A = \mathbb{k}[x, y]$$
, and $f = x^2 + y^2$. Then
 $E(\theta_f) \cong \mathbb{M}_2(\mathbb{k}),$

where $\mathbb{M}_2(\mathbf{k})$ is viewed as a \mathbb{Z}_2 -graded algebra by setting

$$\mathbb{M}_2(\mathbb{k})_0 = \left[egin{array}{cc} \mathbb{k} & 0 \ 0 & \mathbb{k} \end{array}
ight], \quad \mathbb{M}_2(\mathbb{k})_1 = \left[egin{array}{cc} 0 & \mathbb{k} \ \mathbb{k} & 0 \end{array}
ight].$$

Hence A_f is a simple graded isolated singularity of 0-type.

• Let $A = \mathbb{k}\langle x_1, \ldots, x_5 \rangle / (r_1, \ldots, r_{10})$, where the generating relations are as follows:

$$\begin{aligned} r_1 &= x_1 x_2 - x_2 x_1, r_2 = x_1 x_3 + x_3 x_1, r_3 = x_1 x_4 + x_4 x_1, \\ r_4 &= x_1 x_5 + x_5 x_1, r_5 = x_2 x_3 - x_3 x_2, r_6 = x_2 x_4 + x_4 x_1, \\ r_7 &= x_2 x_5 + x_5 x_2, r_8 = x_3 x_4 - x_4 x_3, r_9 = x_3 x_5 + x_5 x_3, \\ r_{10} &= x_4 x_5 + x_5 x_4. \end{aligned}$$

Let $f = x_1^2 + \cdots + x_5^2$. Then A_f is a simple graded isolated singularity of 1-type.

• **Remark.** We are unable to find a way to characterize when A_f is a simple graded isolated singularity.

直 と く ヨ と く ヨ と

э

- **Remark.** We are unable to find a way to characterize when A_f is a simple graded isolated singularity.
- **Proposition.** Let A be a quantum polynomial algebra of global dimension n, and let $f \in A_2$ be a central regular element.
 - (i) If A_f is a simple graded isolated singularity of 0-type, then n is even.
 - (ii) If A_f is a simple graded isolated singularity of 1-type, then n is odd.

伺 ト イ ヨ ト イ ヨ ト

• We have the following generalized Knörrer's periodicity theorem.

Theorem

Let A and B be quantum polynomial algebras, and let $f \in A_2$ and $g \in B_2$ be central elements. Suppose that $A \otimes B$ is noetherian, and let $h = f + g \in A \otimes B$.

 (i) If B_g is a simple graded isolated singularity of 0-tpye, then there are equivalences of triangulated categories <u>mcm(A ⊗ B)_h</u> ≅ D^b(modE(θ_f)₀) ≅ mcmA_f;

(ii) If B_g is a simple graded isolated singularity of 1-type, there is an equivalence of triangulated categories
 <u>mcm(A ⊗ B)_h ≅ D^b(modE(θ_f)^{\$})</u>,
 where E(θ_f)^{\$} is the underlying ungraded algebra, and modE(θ_f)^{\$} is

the category of all the finite dimensional modules over $E(\theta_f)^{\natural}$.

J.-W. He, X.-C. Ma, Y. Ye, Generalized Knörrer Periodicity Theorem, preprint, 2021.

- 4 同 6 4 日 6 4 日 6

Noncommutative Knörrer's periodicity theorem

• In particular, if we take $B = \mathbb{k}[x, y]$ and $g = x^2 + y^2$.

Theorem

Let A be a quantum polynomial algebra and let $f \in A_2$ be a central element. (i) Let $A_f^{\#\#} = A[x, y]/(f + x^2 + y^2)$. Then $\underline{\mathrm{mcm}} A_f^{\#\#} \cong \underline{\mathrm{mcm}} A_f \cong D^b(\mathrm{mod} E(\theta_f)_0)$. (ii)Let $A_f^{\#} = A[x]/(f + x^2)$. Then $\underline{\mathrm{mcm}} A_f^{\#} \cong D^b(\mathrm{mod} E(\theta_f)^{\natural})$.

 ${\sf H.}$ Knörrer, Cohen-Macaulay modules on hypersurface singularities I, Invent. Math. 88 (1987), 153–164.

A. Conner, E. Kirkman, W. F. Moore, C. Walton, Noncommutative Knörrer periodicity and noncommutative Kleinian singularities, arXiv:1809.06524.

J.-W. He, Y. Ye, Clifford deformations of Koszul Frobenius algebras and noncommutative quadrics, arxiv:1905.04699.

I. Mori, K. Ueyama, Noncommutative Knörrer's Periodicity Theorem and noncommutative

quadric surfaces, arXiv:1905.12266.

イロト 不得 トイヨト イヨト 二日

• Let A be a quantum polynomial algebra, and let $f \in A_2$ be a central element. Taking a minimal graded projective resolution of \mathbb{k}_{A_f} as follows:

$$\cdots \longrightarrow P^{-d} \xrightarrow{\partial^{-d}} P^{-d+1} \xrightarrow{\partial^{-d+1}} \cdots \longrightarrow P^{0} \longrightarrow \Bbbk_{A_{f}} \longrightarrow 0.$$

Let $\Omega^d(\mathbb{k}_{A_f}) = \ker \partial^{-d+1}$ be the *d*th syzygy of the trivial module.

We fix a notion as follows:

 $\mathbb{M} := \Omega^d(\mathbb{k}_{A_f})(d).$

(4) (2) (4)

• Let A be a quantum polynomial algebra, and let $f \in A_2$ be a central element. Taking a minimal graded projective resolution of \mathbb{k}_{A_f} as follows:

$$\cdots \longrightarrow P^{-d} \xrightarrow{\partial^{-d}} P^{-d+1} \xrightarrow{\partial^{-d+1}} \cdots \longrightarrow P^{0} \longrightarrow \Bbbk_{A_{f}} \longrightarrow 0.$$

Let $\Omega^d(\mathbb{k}_{A_f}) = \ker \partial^{-d+1}$ be the *d*th syzygy of the trivial module.

We fix a notion as follows:

 $\mathbb{M} := \Omega^d(\mathbb{k}_{A_f})(d).$

Theorem

We have $\operatorname{End}_{\operatorname{gr} A_f}(\mathbb{M}) \cong E(\theta_f)_0 \cong C(A_f)$.

J.-W. He, Y. Ye, Pre-resolutions of noncommutative isolated singularities,

arXiv:2005.11873.

(4月) イヨト イヨト

• Let
$$\mathbb{k} = \mathbb{C}$$
, let $S = \mathbb{k}\langle x, y, z \rangle / (R)$, where
 $R = \operatorname{span}\{xz + zx, yz + zy, x^2 + y^2\}$.
Let $f = x^2 + z^2 \in S_2$, and $A = S/Sf$.
Then injdim $A_A = 2$.

▲圖▶ ▲屋▶ ▲屋

æ

• Let
$$\mathbb{k} = \mathbb{C}$$
, let $S = \mathbb{k}\langle x, y, z \rangle / (R)$, where
 $R = \operatorname{span}\{xz + zx, yz + zy, x^2 + y^2\}$.
Let $f = x^2 + z^2 \in S_2$, and $A = S/Sf$.
Then injdim $A_A = 2$.

• Set $\mathbb{M} = \Omega^2(\mathbb{k}_A)(2)$.

 \mathbb{M} is a quotient module of the free module $m_1A \oplus m_2A \oplus m_3A \oplus m_4A$ with relations:

$$r_{1} = m_{1}x + m_{2}y + m_{3}z,$$

$$r_{2} = 2m_{1}x + m_{2}y + m_{3}z + m_{4}z,$$

$$r_{3} = m_{2}z - m_{3}y + m_{4}y,$$

$$r_{4} = m_{1}z + m_{2}z - m_{3}y + m_{4}(x + y).$$

۲

$$\mathsf{End}_{\mathsf{gr}A}(\mathbb{M}) = \left\{ \begin{pmatrix} b+d & 0 & a & a \\ 0 & b & c & 0 \\ 0 & -c & b & 0 \\ a & c & d & b+d \end{pmatrix} : a, b, c, d \in \mathbb{K} \right\}.$$

・日本 ・日本 ・日

æ

۲

$$\operatorname{End}_{\operatorname{gr} A}(\mathbb{M}) = \left\{ \begin{pmatrix} b+d & 0 & a & a \\ 0 & b & c & 0 \\ 0 & -c & b & 0 \\ a & c & d & b+d \end{pmatrix} : a, b, c, d \in \mathbb{K} \right\}.$$

 We have the following complete set of primitive idempotents in End_{gr A}(M):

何济位

$$e_{1} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2}i & 0 \\ 0 & -\frac{1}{2}i & \frac{1}{2} & 0 \\ 0 & \frac{1}{2}i & -\frac{1}{2} & 0 \end{pmatrix}, \quad e_{2} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2}i & 0 \\ 0 & \frac{1}{2}i & \frac{1}{2} & 0 \\ 0 & -\frac{1}{2}i & -\frac{1}{2} & 0 \end{pmatrix},$$
$$e_{3} = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}, \quad e_{4} = \begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}.$$

• We have the following nonprojective nonisomorphic indecomposable MCM modules:

$$\mathbb{M}^1 := A/(y+iz)A, \ \mathbb{M}^2 := A/(y-iz)A,$$

 $\mathbb{M}^3 := A/(x+z)A, \ \mathbb{M}^4 := A/(x-z)A.$

∃ ▶

谢谢!

何济位 Cohen-Macaulay modules of quotient singularities